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Abstract

We present a comprehensive unsupervised learning algorithm of Optimality The-

ory grammars. With only one FAITH constraint to begin with, the learner ex-

tracts phonological generalizations from a given surface language and induces

both faithfulness and markedness constraints by searching an infinite hypothesis

space provided by Universal Grammar along with a lexicon of underlying rep-

resentations selected from an infinite lexical space. The algorithm assumes that

the learner is equipped with only minimal machinery, having the ability to rep-

resent a grammar in memory and use it to parse input data. The key ingredient

is a new evaluation metric that we propose for Optimality Theory based on the

domain-general principle of Minimum Description Length (MDL). Following the

MDL evaluation metric, the goal of the learner is to minimize encoding length

of both the grammar and the input data given that grammar (see figure below).

This research will argue that both a principle of economy and a principle of re-

strictiveness are required for acquisition, calling for an MDL-like criterion for

learnability.
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Chapter 1

Background

A central component of Chomsky and Halle (1968)’s Sound Pattern of English

(SPE) is the evaluation metric, a criterion for comparing grammars given the data.

For a grammar G that can parse the data, the value of G is the inverse of the

length of G, 1
|G| . Using this criterion, the child can try to search through the space

of possible grammars, eliminating suboptimal grammars as it proceeds.

The evaluation metric was attractive for a variety of reasons. In particular,

it is a very general criterion for comparing hypotheses, and it is one that works

directly with the representations provided by UG. Different SPE-style theories of

UG might be entertained by the phonologist, and these theories may differ in the

representations they allow – for example, one theory may sanction braces as a

mechanism for abbreviating rules, while another theory will bar such mechanisms

– but whichever theory is chosen, the evaluation metric will be able to work with

it without modification. This, in turn, opens the way for the phonologist to use the

6



CHAPTER 1. BACKGROUND 7

evaluation metric to compare theories of UG: two proposals might be comparably

adequate in accounting for adult data, but the predictions regarding learning, given

the evaluation metric, may well diverge.

Despite its conceptual appeal, the evaluation metric did not lead to actual

learning algorithms for SPE. In part, this can be attributed to specific choices in the

definition of the metric, chief among them the decision to treat all grammars that

parse the input as equally successful empirically, leaving the evaluation entirely

to the prior preference for simpler grammars. As we will see, this choice leads to

serious deficiencies with respect to choosing between hypotheses. A growing dis-

comfort within generative linguistics regarding infinite learning spaces may have

also played a role. In the years following SPE, the evaluation metric was quietly

abandoned.

The advent of Optimality Theory (OT; Prince and Smolensky, 1993) has led to

an explosion of work on learning in phonology, including several concrete learn-

ing algorithms. For the most part, however, this work has targeted specific aspects

of the learning problem and has not been carried out within the framework of an

overarching evaluation metric. This is not surprising: the original formulation of

the evaluation metric makes it straightforward to apply to rule-based systems but

much less easy to apply to constraint-based ones.

Our goal in this thesis is to develop an evaluation metric for OT. The concep-

tual advantages of such a metric are as significant for OT as they were for SPE.

In particular, the generality of the evaluation metric holds the promise of working

across components, encompassing the lexicon, the constraints, and morphology,
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among other parts of the grammar. And the close connection to the representations

makes the evaluation metric a natural starting point for the study of learning: in a

sense, this metric will be what we are entitled to simply by virtue of committing

to the kind of UG specified for by OT.

The evaluation metric we propose allows a learner to induce a lexicon and a

phonological grammar from unanalyzed surface forms. We wish to model aspects

of knowledge such as the English-speaking child’s knowledge that the aspiration

of the first segment of khæt is predictable and the French-speaking child’s knowl-

edge that the final l of table ‘table’ is optional and can be deleted while that of

parle ‘speak’ cannot. We take it that any theory of phonology would require this

knowledge to be learned rather than innate, making this a convenient place to start.

We will try to show that the learner we present succeeds in obtaining this kind of

knowledge while existing learners from the literature do not.

We start, in chapter 2, by constructing the evaluation metric, based on the prin-

ciple of Minimum Description Length (MDL), a criterion growing out of a line

of work pioneered by Solomonoff (1964) and used for various aspects of natural

language by Berwick (1982), Rissanen and Ristad (1994), Stolcke (1994), Brent

and Cartwright (1996), Grünwald (1996), de Marcken (1996), Clark (2001), Gold-

smith (2001, 2010), Dowman (2007), Chater and Vitányi (2007), Hsu and Chater

(2010), Hsu et al. (2011), and Goldsmith and Riggle (2012), among others. These

works target various aspects of linguistic knowledge, but none of them addresses

the kind of phonological knowledge that we are interested in here, and none works

with OT. Meanwhile, despite a commitment in OT phonology to the development
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of learning procedures, OT learners have followed principles – notably Richness

of the Base (Prince and Smolensky, 1993 and Smolensky, 1996) and Lexicon Opti-

mization (Prince and Smolensky, 1993 and Inkelas, 1995) – that are quite different

from the MDL metric. From the perspective of mainstream OT learning, then, our

proposal might seem foreign.

In order to make the MDL metric less foreign, we will try to show that the

MDL metric, while different from current OT learners, is in fact familiar from the

evaluation criterion that a working OT phonologist may use to choose between

competing hypotheses. By noting the steps that a phonologist might go through

in analyzing an unknown language we will obtain a recipe for the simultaneous

induction of lexicon, constraints, and ranking. We will point out that the different

steps of the recipe can be unified by observing that they all involve the optimiza-

tion of two quantities, one that reflects the compactness of the grammar itself

(including the lexicon) and one that reflects the ease with which the grammar

can be used to describe the data. The MDL evaluation metric for the phonolo-

gist will be the sum of the two quantities. After developing the MDL metric for

the phonologist, we will suggest that the same criterion can form the basis for an

evaluation metric for the learner. The phonologist and the learner are different in

many significant ways – for example, the child’s hypothesis space is constrained

by UG, while the phonologist is free to explore arbitrary hypotheses; and the pho-

nologist may perform experiments, which the child cannot – but we will argue

that the same criterion that defines the evaluation metric within the space of hy-

potheses entertained by the phonologist can guide the learner within the space of
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hypotheses defined by UG. Moreover, we will argue that, for the linguist studying

learning, this should be the null hypothesis regarding the child.

In chapter 3 we will present preliminary simulation results. We will demon-

strate, using four different datasets generated by artificial grammars, that the MDL

evaluation metric enables the successful learning of nontrivial combinations of

lexicons and constraints. Our main result is that the evaluation metric supports

the induction of lexicons and constraint rankings, aspects of the learning task that

are required under all versions of OT. But the generality of the metric will also

allow us to learn additional parts of the grammar without changing our learner.

We will demonstrate this by learning not just the lexicon and the ranking of the

constraints but also the constraints themselves. Here not all theories agree that

the relevant knowledge is learned – indeed, classical OT assumes that the content

of the constraints is innate. However, recent work by Heinz (2007) and Hayes

and Wilson (2008) has shown that the acquisition of phonotactic knowledge is

a rich and interesting question, and we believe that learning the content of the

OT constraints (both markedness and faithfulness constraints) from general con-

straint schemata is at the very least a direction worth exploring. The learner that

we present succeeds in obtaining this knowledge, combining lexical learning with

the induction of specific markedness and faithfulness constraints, making it a first

in this domain as well.

In chapter 4 we review previous proposals for learning within OT. As we dis-

cuss in section 4.1, most of the work in the literature focuses on questions that are

quite distinct from those of the present thesis. We then turn to two approaches that
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are much closer to our own in their aims: Maximum-Likelihood Learning of Lexi-

cons and Grammars (Jarosz, 2006b,a), section 4.2; and Lexical-Entropy Learning

(Riggle, 2006), section 4.3. We will show that these proposals can be understood

in terms of the MDL evaluation metric and that this perspective highlights inher-

ent difficulties for each of the proposals: Jarosz’s approach favors grammars that

describe the data well but does not take into account the compactness of the gram-

mar itself, while Riggle’s approach often favors compact grammars but does not

take into account how well they describe the data. Chapter 5 concludes.



Chapter 2

Evaluating phonological patterns

using description length

In this chapter we will develop, in several, mostly informal steps, the general pro-

posal that will serve as the basis for the concrete learner presented in formal detail

in chapter 3. Section 2.1 provides an informal tour of how a phonologist might

construct an OT analysis of an unfamiliar language; as mentioned in the intro-

duction, MDL can seem foreign from the perspective of the literature on learning

in OT, and we will use the working phonologist – rather than the learner – as

our starting point for illustrating how description length can help in comparing

phonological hypotheses. Section 2.2 shows how the choices of the phonologist

can be quantified, following Solomonoff (1964) and much subsequent work on

MDL. Section 2.3 provides a brief discussion of where the learner is similar to and

where it is different from a phonologist comparing hypotheses. We will suggest

12
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that, despite considerable differences between the phonologist and the learner, the

view of the child as a scientist searching through the grammars made available to

it by UG and comparing them using the MDL criterion is a reasonable view and

should in fact serve as our null hypothesis regarding the learner.

2.1 ab-nese: an informal example

Consider a phonologist faced with the task of analyzing a newly discovered lan-

guage. Suppose that the phonologist is working with an informant, who produces

the following strings:

(1) bab, aabab, ab, baab, babaaaa, babababababaabab, aaab, babababaa,

babaaaa, aaab, babababababaabab, baab, bab, ab, aabab, aabab, baab,

babababababaabab, aaab, babababaa, ab, babaaaa, bab, aaab, ab, aaab,

aabab, babababaa, baab

Ahead of examining the data in (1), the phonologist might take an uncommit-

ted stance according to which any sequence of humanly pronounceable segments

is equally plausible. After a quick glance at the data, however, the phonologist is

struck by the following observation: of all the phonetically realizable segments,

only a’s and b’s appear in the strings produced by the informant. This can be seen

as an overgeneration problem for the preliminary, uncommitted hypothesis: in the

absence of anything within the grammar to rule out the appearance of segments

such as c, d, and e, their absence from (1) has to be treated as a surprising acci-

dent. The phonologist concludes that this absence is not an accident and that the
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new language, call it ab-nese, prohibits any segment other than a or b. Within

the framework of OT, this restriction can be expressed by positing markedness

constraints of the form ∗c, ∗d, ∗e, etc., which we will abbreviate as follows:

(2) Constraints: ∗¬{a, b}

The phonologist may wish to support (2) by running experiments of various

sorts. For example, the phonologist may confront the speaker with two novel

forms, one composed only of a’s and b’s and the other including some other seg-

ment as well. To keep the discussion simple, let us assume that if the phonologist

runs such experiments then, both here and in what follows, the results support the

generalizations made so far.

The constraints in (2) correctly rule out any string that includes segments other

than a or b, thus solving the initial overgeneration problem. As it stands, however,

the analysis in (2) still overgenerates: in the sequence in (1), certain sequences

of a’s and b’s, such as ab and babababaa, appear multiple times, while other

sequences of a’s and b’s, such as baba and abb, never appear at all, despite being

fully compatible with (2). The strings that repeat themselves are the following:

(3)
1) ab 3) aaab 5) baab 7) babababaa

2) bab 4) aabab 6) babaaaa 8) babababababaabab

To remedy this second overgeneration problem, the phonologist conjectures

that the grammar of ab-nese includes a lexicon, a repository for information about

the specific forms that are allowed. As a simple starting point, the phonologist

posits (3) as the lexicon. Within the framework of OT, restricting the grammar to
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forms generated from a lexicon does not immediately address the overgeneration

problem: selections from the lexicon can, in principle at least, surface as any form;

a single entry in the lexicon can thus generate any conceivable output. In order to

ensure that this does not happen and that the elements selected from the lexicon

surface unchanged, the phonologist also posits a constraint, FAITH, that penalizes

any changes between the chosen underlying form and its surface form:1

(4) Constraints: ∗¬{a, b}, FAITH

Given the lexicon in (3), the constraints in (4) are unviolated, and so no ranking

among them is needed at this point.

With the aid of (4), the phonologist now has a grammar that accounts for the

fact that the data in (1) are instances of the entries in (3). The analysis is not

fully satisfactory, however: it misses what seems like a significant generalization,

namely that two b’s never appear in a row in a surface form. The phonologist

characterizes the generalization in terms of an additional markedness constraint,

*bb, which is ranked above FAITH to ensure that bb sequences in the lexicon will

not survive the mapping to surface forms:

1When we introduced ∗¬{a, b} in (2) above, its purpose was to address the initial overgen-
eration problem that we encountered. Now, with the introduction of the lexicon and of an un-
dominated FAITH, this problem is resolved independently of ∗¬{a, b}. This does not mean that
∗¬{a, b} has become redundant, however: if the phonologist fails to take the restriction on the
segmental inventory in ab-nese into account, the fact that the lexicon is written only in a’s and b’s
will have to be taken to be a surprising accident; with the commitment to ∗¬{a, b}, on the other
hand, the lexicon seems much more natural. In other words, the present step involves a subtle but
significant shift in the role of ∗¬{a, b} from an aid in making the raw data look more natural to
an aid in making the lexicon look more natural. This shift raises interesting issues regarding the
architecture of the lexicon. We will revisit this point briefly in section 3.3 below, but we hope that
a more comprehensive discussion of the relevant issues and their resolution can wait for a separate
occasion.
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(5) Constraints: ∗¬{a, b}, ∗bb� FAITH

The phonologist may now wish to change the lexicon so as to take advantage

of the new markedness constraint ∗bb. There are two different ways in which

*bb could generate one of the surface forms in (3) from an underlying form that

violates the constraint. When two occurrences of b are adjacent in the underlying

form, *bb could cause one of them to delete, or it could cause an occurrence of a

to be epenthesized between them. Taking the surface form aabab as an example,

the two possibilities are the following:2

(6)
1) a epenthesis bb→ bab /aabb/

2) b deletion bb→ b {/aabnabm/ : n,m ≥ 1}

Deletion and epenthesis are both possible in principle (indeed, it is possible

for both to be active within the same grammar), but – still at the present informal

level – epenthesis seems the more natural of the two and will presumably serve as

the default analysis for all the cases above. This default can be either bolstered or

weakened by future observations of possible correlations between the segments in

question and other patterns. Suppose, for example, that a closer look at ab-nese

revealed a pattern of lengthening that generally affects the penultimate segment.3

If that were the case, the a-epenthesis analysis would be supported if it turned

out that aabab was actually [aab:ab] – the lengthening of the antepenultimate seg-

ment could then be seen as penultimate lengthening that ignores the epenthetic a.

2The deletion option in (6) is shorthand for an infinite family of possibilities for the lexicon.
3Like the rest of the ab-nese example, the pattern of penultimate lengthening is highly artificial.

Realistic counterparts of this pattern include the interaction of stress and epenthesis in languages
such as Mohawk and Yimas. See Alderete (1999) and Alderete and Tesar (2002) for discussion.
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The otherwise dispreferred b-deletion analysis would be supported if it turned out

that the relevant form was [aabab:] – the lengthening of the final segment could

then be seen as penultimate lengthening applying to the UR /aababb/. And an

analysis that posits an underlying /aabab/ and does not use *bb to change the

lexicon would be supported if the form was [aaba:b]. Informally, the default pref-

erence for epenthesis in ab-nese follows from considerations of economy: on the

assumption that a is epenthesized between two adjacent b’s, the lexicon is smaller

than it is on the assumption that it contains additional b’s that are deleted. The

underlying forms, then, are as follows:

(7)
1) /ab/ 3) /aaab/ 5) /baab/ 7) /bbbbaa/

2) /bb/ 4) /aabb/ 6) /bbaaaa/ 8) /bbbbbbaabb/

The lexicon in (7) is an improvement over (3): an intuitively significant regu-

larity, namely the absence of two consecutive b’s, is no longer stated as an accident

of the lexicon (as it was in (3)) but is instead derived systematically by the con-

straints, leaving the lexicon simpler and with fewer regularities than before. Note,

however, that the constraints in (5) do not allow us to take full advantage of the

improved lexicon. The ranking of ∗bb over FAITH allows us to correctly generate

all of the observed forms, using a-epenthesis where needed, but it also allows us to

employ b-deletion and map URs including the forbidden sequence bb onto other,

unattested forms. For example, the UR bb can be mapped either to the attested

bab (through epenthesis) or to the unattested b (through deletion).
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(8)

/bb/ ∗¬{a, b} ∗bb FAITH

a. bb *!

b. * b *

c. + bab *

In other words, by economizing the lexicon we have introduced a new overgener-

ation problem.

Fortunately, the new overgeneration problem can be resolved at the cost of

a very minimal further complication of the grammar. To ensure that only a-

epenthesis resolves double-b sequences, we can split FAITH into two faithfulness

constraints: MAX, which penalizes deletions; and DEP, which penalizes inser-

tions.4 We can now rank ∗bb above DEP but not above MAX, ensuring that avoid-

ing bb will justify insertion (of a) but not deletion (of b):

(9) Constraints: ∗¬{a, b}, MAX, ∗bb� DEP

Is the analysis complete? The answer is yes, but it will be useful to understand

why. The steps we took in developing the analysis above were meant to address

two kinds of concerns: we wanted to minimize overgeneration with respect to the

attested forms; and we wanted to avoid any pointless complexity in the analysis

itself. Let us call the first consideration restrictiveness and the second economy.

As far as the data in (1) are concerned, the analysis, combining the lexicon in (7)

and the constraints in (9), seems fully restrictive: it can generate only those forms

that have been observed. What about economy? We just saw that *bb allowed us
4To simplify the present discussion, we consider here only insertions and deletions as possible

modifications.
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to obtain a more compact theory. But this was just one among many patterns in the

data, and it might seem tempting to try to capture some of the additional patterns

as well. For example, the number of b’s in the examples happens to always be a

power of 2: 1, 2, 4, and 8 (higher powers are missing). And the number of a’s is

always a Fibonacci number: 1, 2, 3, 5, and 8 (all Fibonacci numbers higher than 8

are missing). Somewhat less exotically, the sequence aaaaa never appears in the

data, and the sequence ba never appears word-finally. In principle at least, there

is nothing to prevent us from modifying the grammar so as to take advantage of

these patterns and squeeze them out of the lexicon.

For example, we could add the following markedness constraints to the gram-

mar and rank all of them above DEP: FIB(a) (penalizing any form in which the

number of a’s is not a Fibonacci number), 2n(b) (penalizing any form in which

the number of b’s is not a power of 2), *ba#, and *aaaaa. We can use these

constraints to obtain a shorter UR for the surface form aabab.

(10)

/aaba/ ∗¬{a, b} MAX ∗bb FIB(a) 2n(b) *ba# *aaaaa DEP

a. aaba *!

b. aab *!

c. aabaa *! *

d. + aabab *

In order to save a single segment in this UR, we needed two new constraints

– FIB(a) and *ba# (the remaining two new constraints were not involved in this

case). This tradeoff is hardly a bargain, and it does not improve much through

consideration of the remaining forms in the lexicon. If enough additional forms
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of the general pattern exhibited by aabab are encountered, the resulting savings

in the storage of the URs will justify the price paid by introducing the new con-

straints. But for now, these facts, and infinitely many additional ones, do not help

make the analysis simpler and are best treated as accidents rather than meaningful

patterns: the analysis, as far as the current data are concerned, is complete.

2.2 An evaluation metric for the phonologist

2.2.1 Analyzing ab-nese using description length

The process just described attempts to maximize the economy and the restrictive-

ness of the grammar given the data. In section 2.3 we will use the phonologist’s

criterion for comparing hypotheses – the phonologist’s evaluation metric – as a

model for the learner’s evaluation metric. Before we can do that, however, we

will need to make the phonologist’s evaluation metric more explicit. In partic-

ular, we will need to understand how economy and restrictiveness are measured

and how the two measurements are combined. As it turns out, it is easy to make

incorrect choices here, choices that would lead the phonologist to favor hypothe-

ses that clash directly with our intuitions regarding linguistic analysis. We will

see a few illustrative cases below. But let us start with what we think is the right

choice, first formulated by Ray Solomonoff (Solomonoff, 1960, 1964). Accord-

ing to Solomonoff, a hypothesis is a complete description of the data – think of

it as a computer program that runs, prints out the data, and then halts. The value

of a hypothesis is determined by its length: the shorter the hypothesis (for ex-
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ample, as measured in bits in the source file containing it on the computer), the

better it is. It is often convenient to separate the logic of the program from any

accidental aspects of the data and think of the program as the combination of two

distinct parts: the ‘real’ program, or grammar, which we will write as G; and the

encoding of the data D using the grammar, which we will write as D|G. As we

will shortly see, the length of G, |G|, corresponds to the informal notion of econ-

omy, while the length of D|G, |D|G|, corresponds to restrictiveness. The goal of

the phonologist, on this view, is to find the hypothesis that provides the shortest

overall length. That is, the grammar that provides the shortest value for the sum

|G|+ |D|G|.

0101011010101001010︸ ︷︷ ︸
Lexicon

10101010010︸ ︷︷ ︸
Constraints︸ ︷︷ ︸

G

10100010110101︸ ︷︷ ︸
D|G

Figure 2.1: Schematic view of Solomonoff’s evaluation metric as applied to OT. The grammar G
consists of both lexicon and constraints. The data D are represented not directly but as encoded
by G. The overall description of the data is the combination of G and D|G.

Let us illustrate. Suppose we wish to obtain a complete description of the

data in (1), for example in order to convey it to a phonologist who has no direct

access to our informant. Ahead of the analysis that we went through, the data

would be no more than an arbitrary sequence to us. To convey it we can do no

better than transmit it symbol by symbol, specifying at each step which symbol is

chosen out of the full alphabet. The usual way of specifying choices out of a set

is as a string of bits – that is, a string of binary choices, each of which can be 0
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or 1. If the full alphabet has four elements, for example, we can arrange them in

a row – say, a1, a2, a3, and a4 – and specify the choice using two bits: the first

specifying whether the choice is among the leftmost two or the rightmost two (so

0 says that the choice is among a1 and a2 and 1 says that the choice is among a3

and a4) and the second doing the same within the subset specified by the first (so

if the first bit was 0 and the second bit was 1, then the specified element is a2).

If there are eight elements in our full alphabet, write them as a1 to a8, two bits

would no longer suffice: we would need an additional bit to specify first whether

the chosen element is among the leftmost four or the rightmost four, after which

two bits will allow us to specify the exact choice as before. More generally, if

there are n elements in our full alphabet, we would need dlg ne bits to specify an

individual element. For example, if our alphabet is the IPA, which has 107 letters

and 31 diacritics, we would need dlg(107 + 31)e = 8 bits to encode an individual

choice. To convey the data in (1) under the null hypothesis, then, we would need

to spend the number of bits we require to encode an arbitrary symbol – eight if

we are using the IPA – times the number of characters in the sequence, including

commas.

As soon as we notice that only a’s, b’s, and commas occur in the input data,

we can replace the eight bits per symbol with a fixed code length of two bits per

symbol, and the length of the code drops accordingly.5 Encoding the restriction

of the segmental inventory to the set {a, b} takes up a few additional bits, thus

5We ignore here the slight additional savings made possible by using a variable code length, for
example through Huffman coding (Huffman, 1952). See Cover and Thomas (2006) for discussion.
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increasing |G| slightly, but this addition is easily offset by the savings to |D|G|

obtained through the drop from eight bits per symbol to two, even for a relatively

short text. Note that the phonologist’s notion of overgeneration – that is, of a

hypothesis being overly inclusive, making the attested data surprising – translates

into a statement about D|G being too long. The comparison between the two

hypotheses is schematized in Figure 2.2.

10101010010︸ ︷︷ ︸
Null G

10100010︸ ︷︷ ︸
8

11001011︸ ︷︷ ︸
8

11001011︸ ︷︷ ︸
8

10100010︸ ︷︷ ︸
8

10100010︸ ︷︷ ︸
8

. . .︸ ︷︷ ︸
D|G

01101010010111001110︸ ︷︷ ︸
G=∗¬a,b

10︸︷︷︸
2

11︸︷︷︸
2

11︸︷︷︸
2

10︸︷︷︸
2

10︸︷︷︸
2

. . .︸ ︷︷ ︸
D|G

Figure 2.2: Two simple hypotheses (schematic). The null hypothesis (top) treats the data as an
arbitrary sequence of segments. Encoding the grammar is simple, but the price paid for encoding
the data is high: eight bits per segment. The hypothesis that treats the data as an arbitrary sequence
of a’s, b’s, and commas requires a slightly more complex grammar, but the savings in encoding
the data are noticeable: we now have to pay only two bits per segment.

Our next step in the analysis, introducing a lexicon, allows us to derive further

savings. If there are only eight sequences that keep repeating themselves, we no

longer need to encode each segment individually. Instead, we can transmit the

lexicon once, in the beginning of the transmission, and then use lg 8 = 3 bits to

specify which word is chosen each time. For babaaaa, for example, this would

mean three bits instead of fourteen bits for each occurrence.

Observing that sequences of the form bb are systematically absent allows us

to compress the lexicon introduced in the previous step: we increase the size of
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the grammar slightly, by adding the constraint *bb, and this allows us to decrease

the overall size of the grammar by removing inter-b instances of a. Note that this

trade-off is carried out entirely at the level of economy; that is, in terms of |G| (we

will immediately turn to the effect of this move on restrictiveness; that is, |D|G|).

Here the savings are not as dramatic as they were in the previous steps, though

they might still be meaningful, and they would be even more so with a bigger

lexicon (assuming it conformed to the same pattern).

Next, as long as FAITH is kept as an atomic constraint, we face an overgener-

ation problem that would leave us worse off than with the uncompressed lexicon.

Each time the UR bb is selected in order to produce the surface form bab, the

system so far would generate two winning candidates, the attested bab and the

unattested b. Again, the phonologist’s notion of overgeneration translates into

an overly long D|G. We would thus have to spend additional bits to ensure that

we produce the former and not the latter. We overcome this problem by splitting

FAITH into two separate constraints, MAX and DEP, and by ranking *bb above

the latter but not above the former. The splitting of FAITH slightly increases the

size of the grammar, but it is a one-time increase, and after that every time the UR

bb is selected, it will lead deterministically to the surface form bab. The past three

steps are schematized in Figure 2.3.

Finally, the putative patterns of powers of 2 and the Fibonacci sequence seem

quite unhelpful at this point in terms of compression, as do ∗a5 and ∗ba#. Dif-

ferently from ∗bb, which aided in compression and was thus taken to capture a

meaningful gap, these other patterns would be taken by the phonologist to capture
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11010011010011101101︸ ︷︷ ︸
Lex=naive

101110︸ ︷︷ ︸
Con=FAITH︸ ︷︷ ︸

G

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

011︸︷︷︸
3

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

. . .︸ ︷︷ ︸
D|G

010110010001︸ ︷︷ ︸
Lex=compressed

1011101001︸ ︷︷ ︸
Con=FAITH,∗bb︸ ︷︷ ︸

G

010 0︸ ︷︷ ︸
4

110︸︷︷︸
3

011 0︸ ︷︷ ︸
4

011 0︸ ︷︷ ︸
4

010 0︸ ︷︷ ︸
4

110︸︷︷︸
3

011 0︸ ︷︷ ︸
4

. . .︸ ︷︷ ︸
D|G

010110010001︸ ︷︷ ︸
Lex=compressed

1001101110110︸ ︷︷ ︸
Con=MAX,∗bb�DEP︸ ︷︷ ︸
G

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

011︸︷︷︸
3

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

. . .︸ ︷︷ ︸
D|G

Figure 2.3: Three more advanced hypotheses. Introducing a naive lexicon, in which the attested
strings are listed, allows us to describe the data word-by-word rather than segment-by-segment,
yielding significant savings (top). Squeezing the pattern *bb out of the lexicon results in a shorter
lexicon but longer overall description length: for each UR that includes the sequence bb, we
will now need to specify that the surface form is the result of a-epenthesis rather than b-deletion
(middle). Splitting FAITH into MAX and DEP allows us to maintain both a short lexicon and a
short description of the data at the modest cost of a slight complication of the constraints, leading
to the shortest overall length (bottom).

accidental gaps – from the perspective of description length, capturing these pat-

terns lengthens |G| more than it shortens |D|G| – and consequently they are not

added to the grammar.

2.2.2 Economy and restrictiveness must be minimized together

Each of our steps above attempted to improve the analysis by shortening the en-

coding. In this respect, the phonologist’s strategy is one among many imaginable

strategies incorporating a simplicity bias, a general approach that is often associ-

ated with Occam’s Razor. But the details of how simplicity is implemented matter.

Crucially, what matters to the phonologist is the entire message length: economy
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(that is, the length of the grammar, including the lexicon) and restrictiveness (that

is, the encoding of the data given the grammar) must be balanced against one

another. Minimizing only the one or only the other would lead to unsatisfactory

results, as we now discuss.

Suppose, for example, that the phonologist had ignored restrictiveness and fo-

cused on economy alone. The phonologist would then never have departed from

the initial, perfectly simple hypothesis that said that any sequence of segments is

possible. And if forced by someone to abandon that hypothesis and accept that

only a’s and b’s occurred, the phonologist would have settled on that hypothesis

and moved no further. If forced to move forward and adopt a lexicon, the phonol-

ogist might have had an incentive to minimize it by adding ∗bb to the grammar and

shortening the URs, but they would have had no cause to split FAITH into MAX

and DEP. In each of these steps, we have a simple but incorrect hypothesis that

admits a proper superset of ab-nese. The ab-nese data will of course never fur-

nish a counterexample to such a hypothesis – an instance of the so-called subset

problem – and the exclusive focus on economy will leave the phonologist with the

incorrect superset language. Since the simpler hypothesis in these cases is overly

inclusive, it will need to be able to encode not only the elements of ab-nese but

also those elements of the superset language that are not in ab-nese, such as b,

which can result in an encoding of the ab-nese data that is considerably longer

than under a more restrictive hypothesis that does not need to be able to encode

elements such as b. In other words, an exclusive focus on economy can lead to a

lengthening of |D|G| that more than offsets any gains in |G|. Note that combining
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a first step of economy with a second step of restrictiveness will be of little help:

the problematic winner in each of the steps just summarized is strictly simpler

than the losing competitor, thus making it impossible for some tie-breaking crite-

rion in the second step to reverse the overgeneration problem. Economy alone is

the essence of the evaluation metric of Chomsky and Halle (1968)’s SPE, and a

two-step architecture in which a criterion such as restrictiveness operates on the

outcome of economy is at the heart of the earlier version of the evaluation metric

in Chomsky (1951), as well as what Kiparsky (2007) calls Pān. ini’s Razor. The

problem for economy has been noted by Braine (1971), Baker (1979), and Dell

(1981), and we will revisit it in our discussion of Riggle (2006)’s Lexical Entropy

learner in section 4.3.

Consider next what would happen if the phonologist chose to ignore economy

and focus on restrictiveness alone. In particular, it is sometimes suggested that,

as a remedy to the subset problem, generalization should be conservative and al-

ways choose the smallest language under consideration that is compatible with

the data, a preference known as the subset principle (see Wexler and Culicover,

1980, Berwick, 1985, and Manzini and Wexler, 1987). From the perspective of

description length, restrictiveness alone can be implemented as a preference for

shortening D|G (that is, a preference for a grammar that makes the data typical),

irrespective of |G|. Restrictiveness alone is an approach that respects the subset

principle. While escaping the subset problem, a phonologist relying on the subset

principle runs straight into the mirror image of the problem for economy alone:

instead of wild overgeneralization, such a phonologist never generalizes at all. In
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the case of ab-nese, for example, a phonologist focusing on restrictiveness alone

would have been perfectly content with our first lexicon, which simply memorizes

the surface forms, with no incentive to add ∗bb and compress the URs. This, in

turn, would make a putative future word aab equally easy to accommodate as abb;

and while ab-nese is of course artificial, the counterparts of this prediction for nat-

ural languages such as English have been recognized as problematic as early as

Halle (1962), and we will revisit it in our discussion of Jarosz (2006b,a)’s Max-

imum Likelihood learner in section 4.2 below. The dangers of adhering to the

subset principle become particularly clear when the language is infinite (or just

too big for the phonologist to encounter in its entirety). To keep things simple,

imagine a dialect of ab-nese, call it zab-nese, in which any nonnegative number

of z’s can precede any word. We would expect a reasonable phonologist to no-

tice this generalization after enough surface forms have been observed. A fully

restrictive phonologist, however, will never generalize. At any given point, such

a phonologist will have had exposure to a finite number of such z-variants, and

these forms will be listed as part of the grammar, thus increasing |G| with each

newly observed form. So while the gains of economy alone in |G| often lead to

the lengthening of D|G, the gains of restrictiveness alone in |D|G| often arise

through memorization of the data inG, which can result in considerable lengthen-

ing of |G|. Note also that, as with our earlier discussion of economy, the problem

will not be solved by using restrictiveness as a first step that then feeds a second

criterion such as simplicity. The incorrect winner at each step in the case of zab-

nese will always be strictly more restrictive than the correct hypothesis, rendering
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a tie-breaking second step useless.

In short, we must take both economy and restrictiveness into account, and we

must minimize both simultaneously: a good hypothesis is one that balances the

minimization of |G| (which favors simple but often overly inclusive hypotheses)

with that of |D|G| (which favors restrictive but often overly memorized hypothe-

ses). Using the MDL value |G| + |D|G| as the evaluation metric provides ex-

actly the right kind of balance. As mentioned, the first to propose this idea was

Solomonoff (1960, 1964), who used his discovery to formulate a fully general the-

ory of prediction. The same idea of viewing hypotheses as programs that output

the data and defining their value according to their length was discovered indepen-

dently (from a slightly different perspective) by Kolmogorov (1965) and Chaitin

(1966). The length of the shortest program that outputs the dataD is known as the

Kolmogorov complexity of D and is written K(D).6 Kolmogorov complexity is

not computable, and while it is an important tool for deriving results about learn-

ability in principle, as in Chater and Vitányi (2007), it is often necessary to restrict

the hypothesis space to ensure computability. This is done in the frameworks of

Minimum Message Length (MML; Wallace and Boulton, 1968) and Minimum

Description Length (MDL; Rissanen, 1978). To simplify terminology, and since

the differences between the frameworks incorporating Solomonoff’s insight will

not be central to our proposal, we will refer to any attempt to minimize |G|+|D|G|

(often within a restricted family of possible grammars) as MDL. The relevance of

MDL for grammar induction was already noted by Solomonoff (1964). Over the

6See Li and Vitányi (2008) for a detailed and thorough discussion of Kolmogorov complexity.



CHAPTER 2. EVALUATING PHONOLOGICAL PATTERNS 30

years, several authors have used MDL profitably for grammar induction, either as

a methodological principle for the scientist or as a learning criterion for the learner.

Notable examples include Berwick (1982), Rissanen and Ristad (1994), Stolcke

(1994), Brent and Cartwright (1996), Grünwald (1996), de Marcken (1996), Clark

(2001), Goldsmith (2001, 2010), Dowman (2007), Hsu and Chater (2010), Hsu

et al. (2011), and Goldsmith and Riggle (2012).

In chapter 1 we mentioned that MDL has not featured centrally in works on

acquiring phonological knowledge and that in the literature on learning in OT, the

guiding principles (especially Richness of the Base and Lexicon Optimization) are

quite different from MDL. Having tried to show that MDL is in fact natural from

the perspective of the working phonologist, let us explain why the same criterion

can make sense for the child learner. With that background we will then proceed

to present our MDL learner in chapter 3.

2.3 From phonologist to learner

A learner is not a phonologist. The phonologist may, in principle at least, consider

any program as a grammar; the learner, on the other hand, may well be restricted

by UG to a very limited search space. Earlier, for example, we suggested that

the phonologist may consider – but ultimately reject – four patterns in the ab-

nese data: the number of a’s is always a Fibonacci number; the number of b’s

is always a power of two; the sequence aaaaa never occurs; and the sequence

ba never occurs word-finally. While it is conceivable that the child learner is
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also capable of entertaining all these patterns, it could also be that some of these

patterns are impossible for the child to represent, or, as discussed by Heinz (2007),

the child might be able to represent certain patterns but incapable of reaching them

through its learning procedure. The differences between the learner and an ideal

scientist are the focus of a growing literature on underlearning, which investigates

the limitations of what humans can learn. See Smith (1966), Peña et al. (2002),

Endress et al. (2007), Moreton (2008), Endress et al. (2009), Endress and Mehler

(2010), and Becker et al. (2011), among others.

There are other differences as well. For example, the phonologist and the

child differ in the degree of control each has on their respective inputs: as men-

tioned earlier, the phonologist may run controlled experiments using a variety of

methodologies, recruit typological data, and obtain systematic negative evidence;

the learner, on the other hand, is largely restricted to the kinds of evidence that are

given to it by its environment. And the phonologist may also record many years of

data and make reference to all the information accumulated in this fashion, while

the child is quite unlikely to record explicitly the entire history of speech to which

it has been exposed.

But in one important respect, the learner and the phonologist have a great

deal in common: both face the task of making sense of unanalyzed data in the

language they are immersed in, and both bring to the task a hypothesis space,

each point in which represents a grammar. Not all the grammars in the hypothesis

space will be able to generate the data in the first place, but for any grammar

that can, we can look for a sequence of instructions to the grammar – a key –
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that will generate exactly the part of the data that we have seen. As discussed

above, a message consisting of the combination of a grammar and a key provides

a full description of the data, and we can think of the phonologist as searching

the space for the grammar that yields the shortest such message. The hypothesis

space for the phonologist is biased toward mechanisms that work well with past

observations – recall that in discussing ab-nese we took it for granted that we

could easily encode constraints, ranking, and lexicons – but it is a very big space,

and it includes many additional mechanisms (for example, if ab-nese turned out to

be problematic for OT, we might consider a complete revision of the architectural

premises of the grammar). This was the essence of the discovery procedure that

we built in the previous section.

For the child learner, things are less clear. Like the phonologist, the child at-

tempts to settle on a point in the hypothesis space (in the case of the child, the

hypothesis space is probably considerably more limited than for the phonologist;

for example, either OT or SPE but presumably not both). But there is little conclu-

sive evidence to date about how the child chooses this point. It is conceivable, of

course, that the child searches through its hypothesis space for the hypothesis that

yields the most favorable value for some evaluation metric, and it is conceivable

that this metric is MDL; but there are any number of other methods that the child

might be using, and many of them do not amount to optimization using an eval-

uation metric at all. For example, it might look for the first grammar under some

enumeration that is compatible with the data; or it might look for a grammar that is

not compatible with the data; or it might use the first two words in the input data as
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a key for selecting a grammar out of a big table, regardless of compatibility; and so

on. Of course, there are also learning procedures that are considerably more rea-

sonable than those just mentioned. See, in particular, Manzini and Wexler (1987),

Gibson and Wexler (1994), and Niyogi and Berwick (1996) for such procedures

for the hypothesis space provided by the Principles and Parameters framework of

Chomsky (1981); in chapter 4 we will review several procedures of this kind that

have been proposed for the hypothesis space provided by OT. See Chomsky and

Halle (1968), Braine (1971), Wexler and Culicover (1980), and Jain et al. (1999)

for further discussion of the child and its space of hypotheses.

However, and this is a point we wish to stress, of all the different methods

the child might be using, the one that parallels the phonologist’s search, when ap-

plied to the hypothesis space provided by UG and with the same MDL evaluation

metric, is in a sense the simplest. The child already has access to the hypothesis

space, and each point in that space that allows it to parse the data provides the

basis for at least one full description of the data; all that is missing is the ability

to traverse this space and test different hypotheses, comparing the messages they

support in terms of overall length. If the child can maintain a current hypothesis

and a new hypothesis simultaneously and use them both to parse the data, and if

the child can switch from one hypothesis to another in a way that lets it traverse a

portion of the hypothesis space that allows convergence, it will be able to mirror

the phonologist’s search. And if the child can compare the overall memory space

required to encode the data using two hypotheses, it can mirror the phonologist’s

criterion. The procedure that parallels the phonologist, then, is available to the
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child almost in full simply by virtue of having the ability to represent and use

grammars from within the set allowed by UG: indeed, it seems that one would

have to make special stipulations to block such a procedure. Any other proce-

dure for selecting grammars that we know of – including the highly articulated

initial state of Markedness-above-Faithfulness proposed by Smolensky (1996) as

an implementation of ROTB or the principle of Lexicon Optimization (Prince and

Smolensky, 1993; further developed by Inkelas, 1995) that favors URs that lead to

maximally harmonious mappings to surface forms – requires considerably bigger

commitments. As a matter of scientific methodology, then, it makes sense to take

the child-as-phonologist model as the null hypothesis and abandon it in favor of

other, more elaborate models only in the face of sufficient evidence against it.



Chapter 3

Simulation results

One obvious kind of evidence for the inadequacy of the child-as-phonologist

model would be a demonstration that it is incapable of learning the kinds of pat-

terns that children acquire from typical data, and that some other learning proce-

dure manages to learn these patterns better. So having presented our reasons for

taking the model of the child as an MDL phonologist as the null hypothesis, we

now proceed to present (in the current chapter) evidence that such a learner can

indeed succeed on linguistically relevant patterns. Then, in chapter 4, we will dis-

cuss alternative learners proposed in the literature on learning in OT and attempt

to show that these learners are less successful than our MDL learner in handling

patterns of the kind discussed here.

We will not be able to test the learner on a real-life corpus at this point. In-

stead, we will provide a proof-of-concept demonstration, using datasets generated

35
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by artificial grammars that incorporate phonologically interesting dependencies.1

Section 3.1 presents the general setting for our learning simulations, including

the details of how grammars are encoded, how they are used to encode the data,

and how the search is performed. We then present simulation results for the ab-

nese dataset (section 3.2), move on to a language that exhibits some phonological

patterns familiar from aspiration in English (section 3.3), continue to a dataset

showing restricted optionality along the lines of l-deletion in French (section 3.4),

and end with a dataset exemplifying the ability of the current approach to learn

from alternations, modeled after voicing assimilation in Modern Hebrew (section

3.5). As we will see, the learner extracts grammars that seem phonologically ap-

propriate in all four cases. Before examining the simulations, let us present the

setting for the simulations.

3.1 The setting

3.1.1 Encoding

We need to commit in advance to the search space defined by UG: here we will

assume that this space is defined by the ability to state lexicons using a fixed alpha-

bet of feature vectors and the ability to state constraints (and their ranking) using

1We will not attempt to speculate on the amount of data that the child may refer to (with one
extreme being an unbounded batch learner, the other a memory-less online learner, and real life
presumably somewhere in between). The learner presented here is a batch learner, but the amount
of memory that it uses for the data in the following examples is relatively small. We hope that an
investigation of the amount of data used by the human learner and of whether the current learner
can be modified to match this memory constraint can wait for a separate occasion.
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two kinds of very general constraint schemata, one for faithfulness constraints and

one for markedness constraints, as shown in Figure 3.1.2 We wish to emphasize,

though, that our goal is not to argue for this particular theory of UG over other

theories; rather, it is to demonstrate how learning can take place given a search

space provided by UG and our evaluation metric.

DEP(F ) MAX(F ) IDENT(F ) ∗F1F2 . . . Fn

Figure 3.1: Constraint schemata available to the learner. F ’s represent feature bundles.

Recall that our goal is to encode hypotheses as fully explicit messages – specif-

ically, as binary strings – and compare them according to their lengths. Once an

encoding scheme is chosen, each grammarG in the search space is associated with

a value |G| + |D|G| that is obtained by combining the description length of G it-

self (the lexicon and the constraints) and the description length of the data given

G. In the present subsection, we will consider one simple encoding scheme, based

on the feature table in 11 for the binary features consonantal and continuant; we

assume that the table is given to the learner in advance.3 Every simulation that we

present in the following sections will be accompanied by its corresponding feature

table.

2The fixed alphabet could be part of the innate endowment of the learner. Alternatively, it could
be learned during an earlier phase of learning. As far as the present discussion is concerned, all
that matters is that the alphabet is fixed.

3In some of the simulations below we will slightly deviate from the encoding scheme presented
here. When we do so, we will state the differences explicitly.
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(11)

a b s

cons - + +

cont + - +

Let us start with measuring the description length of the lexicon. Consider

the lexicon in (12a). Using a delimiter (#) to mark the end of each word and the

end of the lexicon, we obtain the string representation in (12b). The lexicon is

encoded as a binary string by substituting each symbol in (12b) with a two-digit

binary code: 00 for +, 01 for −, and 10 for #; given the feature table in (11), this

will result in four bits per segment. The size of the lexicon will be the length of

the string in (12c).

(12) a. {asa, ba, bsab}

b. −+ + +−+ # +−−+# +−+ +−+ +−##

c. 01000000010010000101001000010000010000011010

We use a similar procedure to encode the constraints and their ranking (which

we take to be a total ordering). The constraint hierarchy in (13a) is represented

as the string (13b), with a delimiter marking the end of each constraint, the end

of each feature bundle (in the case of phonotactic constraints), and the end of the

constraint hierarchy itself. The symbols D, M , I , and P stand for DEP, MAX,

IDENT, and phonotactic constraints respectively. We enumerate all symbols that

can play a role in constraint descriptions and assign each symbol a fixed binary

code as demonstrated in Figure 3.2. The description length associated with the

constraint set is the length of the binary translation of 13b according to Figure
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3.2.

(13) a. DEP(−cons)�MAX(+cont)� ∗[+cons]

−cons
+cont

� IDENT(−cont)

b. D − cons#M + cont#P + cons#− cons+ cont##I − cont##

Symbol Code Symbol Code Symbol Code Symbol Code
D 0000 cons 0100 + 0110 # 1000
M 0001 cont 0101 − 0111
I 0010
P 0011

Figure 3.2: Binary code assigned to each symbol.

We proceed to measure the length of the data given the grammar, |D|G|. For

convenience, let s1, . . . , sn be an enumeration of the surface representations pre-

sented as data to the learner and u1, . . . , um an enumeration of the URs in G’s

lexicon. For every choice ui from the lexicon, the phonological mapping defined

by G returns as output a set of surface representations, the set of optimal output

candidates for ui (say oi,1, oi,2, . . . ).4 Describing a surface representation that can

be parsed by the grammar amounts to specifying two successive choices: a choice

of a UR ui from the lexicon and a choice of an optimal output oi,j of that UR. We

assign each choice from the lexicon a fixed binary code as illustrated in (14a) (for

the case m = 5). Choices from sets of optimal output candidates receive similar

treatment (14b).

4Often that set contains one optimal output, but a tie between more than one candidate is
possible in principle. We will assume that GEN allows for arbitrary insertions and deletions of
segments.
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(14) a.

UR Code

u1 000

u2 001

u3 010

u4 011

u5 100

b.

u1 u2 u3

Output Code Output Code Output Code

o1,1 00 o2,1 - o3,1 0 · · ·

o1,2 01 o3,2 1

o1,3 10

Suppose now that we wish to encode s1 given G. If s1 cannot be parsed by

G, there is no finite binary string that can serve as a description of s1, and its

description length would be taken to be infinite. Alternatively, suppose that s1 is

equal to the output o1,3 in our example (14b). In that case, s1 can be described

by the binary string 00010 (000 specifies the choice of u1, 10 the choice of o1,3),

so its description length would be 5. In general, phonological grammars are am-

biguous, and it is possible that a given surface representation has more than one

parse. For example, s1 could also be equal to o3,1, an output of u3 under G. When

there are multiple descriptions available, the shortest one will be chosen. In our

example, the string 0100 would end up as the shortest description of s1, a descrip-

tion of length 4. Since infinitely many candidates are generated by GEN, another



CHAPTER 3. SIMULATION RESULTS 41

possibility is that a tie is obtained between an infinite number of optimal candi-

dates. This scenario occurs when epenthesis is not penalized by the grammar. For

our current purposes, we will assume that specifying a choice of one output from

among an infinite set requires infinitely many bits of information. We arrive at the

total description of D|G by concatenating the descriptions of s1, . . . , sn. |D|G| is

the length of the resulting concatenation.

3.1.2 EVAL

The algorithmic infrastructure of our system is closely based on the finite-state

implementation of OT developed in Riggle (2004). The constraint hierarchy is

represented as an ordered list of individual constraints, each of which is imple-

mented as a weighted finite-state transducer. The transducers are intersected to

form the EVAL component of OT. The reader is referred to Riggle (2004) for

details of implementation and optimization and to Heinz et al. (2009) for a dis-

cussion of the problem and its implications from the perspective of computational

complexity.

The properties of EVAL are not taken into consideration in evaluating or com-

paring the complexity of hypotheses. In particular, the complexity of constraints

as measured by our metric is blind to the size of their corresponding finite-state

machines; and the correlation between the two does not seem to be very strong.

Some authors have expressed pessimism about the prospects of measuring the

complexity of finite-state machines as part of a learning strategy that employs

MDL in phonology (see Heinz and Idsardi, 2013), and more generally Adriaans



CHAPTER 3. SIMULATION RESULTS 42

and Jacobs (2006) and Adriaans (2007)), and our results do not weigh in on this

subject.

3.1.3 Search

Our focus in this thesis is the learning criterion. We make no cognitive claims

regarding either the search procedure or the initial state of the search. To make

the learner concrete, though, we must make commitments with respect to both.

For the search procedure, we adopt Simulated Annealing (SA; Kirkpatrick et al.,

1983), a general strategy, schematized in Figure 3.3 and discussed below, which

supports searching through complicated spaces that involve multiple local optima.

D ← input string in Σ
G ← initial grammar(Σ)
T ← initial temperature
while T > threshold do
G′ ← random neighbor(G)
∆ ← [|G′|+ |D|G′|]− [|G|+ |D|G|]
if ∆ < 0 then
p ← 1

else
p ← e−

∆
T

end if
choose G ← G′ with probability p
T ← αT

end while
return G

Figure 3.3: Pseudocode of the search procedure.

SA proceeds by comparing a current hypothesis to its neighbors in terms of

their goodness, which in our case is the total description length. That is if a current
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hypothesis G has G′ as its neighbor, |G|+ |D|G| is compared to |G′|+ |D|G′|. If

G′ is better than G, the search switches to G′. Otherwise, the choice of whether to

switch to G′ is made probabilistically and depends both on how much worse G′ is

and on a temperature parameter. The higher the temperature, the more likely the

search is to switch to a bad neighbor. The temperature is initially set to a relatively

high value, and it is gradually lowered as the search progresses, making the search

increasingly greedy. Our initial temperature was 100, and it was lowered accord-

ing to a cooling schedule in which the temperature at each step is multiplied by

a constant α = 0.999985 to yield the temperature at the next step. The search

ends when the temperature descends below a threshold of 0.01. We have not yet

conducted a systematic study to determine how robust the results reported below

are with respect to different choices of the search parameters. Again, we stress

that our interest is the evaluation metric and not the search, regarding which we

make no cognitive claims.

For the initial state, we assume the naive one in which no patterns in the

data have been discovered. The grammar includes a single faithfulness constraint

FAITH that penalizes any structural change, thus enforcing an identity mapping

between URs and surface forms; the lexicon in the initial grammar is a list of the

surface forms in the input data.5 FAITH is included as an additional symbol in the

calculation of the size of the constraint set (Figure 3.2 above). For any grammar

5In the literature following Smolensky (1996), an initial ordering of Markedness over Faith-
fulness (M � F ) is often assumed as a means to confront the subset problem, but see Hale and
Reiss (1998) for arguments in favor of a faithful initial state. See Albright and Hayes (2011) for
further relevant discussion. On the current proposal, restrictiveness is obtained as a by-product of
the MDL evaluation metric rather than as a property of the initial state.
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G, the neighbor grammar G′ is generated as a variant of G in which one of the

changes in (15) occurs.

(15) a. A segment is added in the lexicon.

b. A segment is removed from the lexicon.

c. A segment is modified in the lexicon.

d. A constraint with a single feature bundle is added in the constraint

hierarchy.

e. A constraint is removed from the constraint hierarchy.

f. A constraint is demoted by one place in the constraint hierarchy.

g. A single feature bundle is added to a phonotactic constraint in the

constraint hierarchy.

h. A single feature bundle is removed from a phonotactic constraint in

the constraint hierarchy.

The modification is chosen according to a uniform distribution over possi-

ble changes. All decisions in a given modification are made randomly as well

(positions for insertion, deletion, and demotion; feature bundles, segments, and

constraints for insertion and modification). There is no upper bound on the size

of the lexicon, the size of a phonotactic constraint, or the size of the constraint

hierarchy.
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3.2 ab-nese

Our first dataset is a language similar to ab-nese, presented in section 2.1 above

and repeated here:

(16) bab, aabab, ab, baab, babaaaa, babababababaabab, aaab, babababaa,

babaaaa, aaab, babababababaabab, baab, bab, ab, aabab, aabab, baab,

babababababaabab, aaab, babababaa, ab, babaaaa, bab, aaab, ab, aaab,

aabab, babababaa, baab

Given an alphabet Σ = {a, b} and one feature ±cons (a = [−cons], b =

[+cons]), we generated an initial pool of words by taking all combinations of 1−6

syllables from the set {a, ab, ba, bab}. We then filtered out all words that included

the sequence bb and provided the learner with the resulting set of words (n =

252). We also chose to multiply the summand |D|G| by 100 in these simulations

due to performance considerations. The full input for this simulation (and the

following ones) is provided in Appendix A.6 As discussed in section 3.1.3 above,

the initial state includes a constraint set with a single FAITH constraint and a

lexicon identical to the data:
6The number of bits required to describe the data given the grammar is affected by the amount

of data the learner is exposed to. By multiplying this factor by a large number we avoided working
with large corpora that would have significantly increased the running time of our algorithm. We
believe that the question of whether |D|G| is indeed multiplied by a constant factor is an interesting
question that should be empirically investigated. Currently, however, we have nothing substantial
to say about this matter. Our results seem to be robust with respect the multiplication factor (small
changes do not affect convergence).
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(17) Initial grammar:

Ginitial =


LEX: bab, aabab, ab, baab, babaaa, babababaa . . .

CON: FAITH

Description length: |Ginitial|+|D|Ginitial| = 4, 622+201, 600 = 206, 222

As discussed in section 2.1, the absence of bb sequences from the data can

be used to obtain a more concise description of it. Consequently, the evaluation

metric favors grammars that encode this pattern over grammars that treat it as a

mere accident. Our learner converged on a final hypothesis in which all relevant

instances of a have been removed from the lexicon and inserted by the grammar:

(18) Final grammar:

Gfinal =


LEX: bb, aabb, ab, baab, bbaaa, bbbbaa, . . .

CON: MAX([+cons])� ∗[+cons][+cons]� FAITH

Description length: |Gfinal|+ |D|Gfinal| = 4, 028 + 201, 600 = 205, 628

The addition of both the markedness (∗[+cons][+cons]) and the faithfulness

(MAX([+cons])) constraints increases the length of CON but helps in minimiz-

ing the total description length. The markedness constraint allows the learner to

compress the lexicon by preventing bb sequences from surfacing. The faithfulness

constraint is introduced to ensure that b deletion incurs more violations than a
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epenthesis. The latter option is therefore deterministically chosen for satisfying

the markedness constraint, and the length of the data given the grammar becomes

lower than it would have been had the faithfulness constraint been left out. The

learner has converged on a simple, restrictive grammar that accords well with our

intuitions about what a correct grammar for the data should look like.

Note that the result differs from the final grammar in our discussion in section

2.1 in two respects. First, a MAX constraint is added instead of having FAITH split

into MAX and DEP. This occurs since DEP does not require a shorter description

length than FAITH and there is no reason for the evaluation metric to favor it.

The second difference is that our representations only allow strict ranking of con-

straints in CON and so MAX([+cons]) can be ranked anywhere in the hierarchy,

whereas in our previous discussion we assumed that non-obligatory rankings were

possible.

3.3 Aspiration

Our next dataset shows a pattern modeled after aspiration in English and is de-

signed to test the learner on the problem of allophonic distribution. Simplifying,

we assume that the ambient language has aspirated stops (like th and kh) appear-

ing before vowels but not elsewhere. The distribution of aspiration is thus entirely

predictable. We expect the learner to treat aspirated stops as allophones of their

unaspirated counterparts. Aspiration in the appropriate places should not be the re-

sult of accidents of the lexicon; rather, it should be enforced by the grammar. One
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way, in line with earlier work in generative phonology but generally not with work

following the OT learning principle of Lexicon Optimization, is to remove aspi-

ration from the lexicon altogether and ensure its insertion through the constraints:

the UR of [khæt] becomes /kæt/ and the UR of [thikhit] becomes /tikit/, while

surface forms where aspiration is missing in the right context (like ∗kat) should

be ungrammatical. Importantly, the grammar should also block aspiration from

occurring elsewhere, as in the illicit surface forms ∗ath and ∗khikht.

Previously, we explained why the MDL evaluation metric favors grammars

that treat patterns such as ∗bb or the present ban on unaspirated prevocalic stops

systematically rather than leaving them as accidents of the lexicon. Adding the

relevant constraints to CON increases its description length but makes it possi-

ble to squeeze information out of the lexicon, thereby lowering the total descrip-

tion length. Here, blocking of aspiration in elsewhere contexts presents a further

learnability challenge. The crucial point is that a grammar that generates aspirated

stops before vowels is not necessarily restrictive enough; the grammar should also

prevent cases where URs like /ath/ or /kikht/ surface with stray aspirated seg-

ments.

One way for the learner to approach this problem is to allow forms like ath

and kikht to be represented underlyingly and block ∗ath and ∗khikht as part of the

input-output mapping. This direction, in line with the OT principle of Richness

of the Base (ROTB), is not available to our MDL learner: on natural assumptions

about the representation of aspiration, a hypothesis with additional underlying in-

stances of aspiration will be more complex than one without them and will thus
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be dispreferred;7 and in the absence of such additional instances of underlying

aspiration, a constraint that ensures that they do not surface will serve no com-

pressional purpose and will likewise cause the hypothesis to be dispreferred. But

constraints on outputs are not the only imaginable response to the restrictiveness

problem raised by the aspiration pattern. A different way for a learner to meet the

challenge – one that follows the early generative notion of Morpheme Structure

Constraints rather than ROTB – is to capitalize on the absence of aspiration from

the lexicon in order to describe the lexicon more succinctly. If aspiration can be

squeezed out of the inventory of primitives from which underlying material is cho-

sen, each choice in the lexicon would cost fewer bits of information. Grammars

that ban underlying aspiration will thus rule out URs like /ath/ and /kikht/ and,

consequently, will block surface aspiration in all inappropriate contexts. Similar

considerations of economy have led to the idea of underspecification in phonolog-

ical theory (see Archangeli, 1988 for an elaboration of this connection, and see

Steriade, 1995 for much relevant discussion), and the feature-based encoding of

the lexicon that we made use of so far fits in naturally with this line of reasoning.

At this stage we will not attempt to incorporate a mechanism of featural un-

derspecification into our OT system. Instead, we will explore a segment-based

parallel of the same idea that will allow us to keep our representations simple:

aspiration will be represented as an individual segment [h], allowing the learner to

7This is true, for example, if aspiration is represented as a separate segment, which is the
somewhat simplistic representation we will use below. It is also true on various other, possibly
more realistic ways to represent aspiration. It is possible, of course, to choose representations that
make it cheaper to encode the presence of aspiration than its absence, but we find it hard to think
of a justification for such a choice.
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minimize description length by removing instances of [h] from the lexicon. The

lexicon will include a dynamic inventory of segments (initially identical to the set

of segments made available by the feature table), whose length will be measured

as well: removing aspiration from this inventory, thus banning aspiration from

URs, will afford a compressional benefit. Formally, the lexicon in (19a) is trans-

formed into the string in (19b), with a delimiter separating the inventory from the

URs. The segments in the fixed feature table provided initially to the learner, in

addition to the delimiter, are enumerated and assigned a fixed binary code. The

procedure is identical to the one described in section 3.1. Choices of segments

for describing the lexicon are made from the new inventory, not from the original

feature table. Accordingly, describing each lexical segment costs dlg n + 1e bits

of information, where n is the number of segments in the new inventory, and 1

is added due to the presence of the delimiter symbol. Measuring the size of the

constraint set and the size of D|G remains the same.8 We will now present the

learning setting and show that this solution leads to correct predictions.

(19) a. {khat, ip, khatpit}

b. haikpt#︸ ︷︷ ︸
inventory

khat#ip#khatpit#︸ ︷︷ ︸
lexicon

The alphabet for our pseudo-English case was Σ = {a, i, u, p, t, k,h }, and we

used the feature table in (20). We generated all monosyllabic words of the form

8We will not attempt to compare the segment-based encoding of the lexicon used in this sim-
ulation to the feature-based encoding that we use in all other simulations. We have successfully
tested the segment-based encoding on all simulations presented in this thesis (see Appendix B),
but chose to present the feature-based encoding as default since it makes the connection to realistic
phonological representations more transparent.
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{CV, V C,CV C} and all bisyllabic words of the form {CV CV, V CV C,CV CCV,CV CV C,CV V C}

over Σ (excluding [h]; n = 774). We then randomly selected 200 words, in which

we inserted aspiration after every stop that preceded a vowel.

(20)

cons stop spread glottis velar labial high

a - - - - - -

i - - - - - +

u - - - - + +

p + + - - + -

t + + - - - -

k + + - + - +

h + - + - - -

As before, the initial state had one constraint FAITH and a lexicon identical to

the data. Note that the segmental inventory is now specified next to the lexicon:

(21) Initial grammar:

a.

Ginitial =


LEX: {a, i, u, p, t, k,h };up, thi, khat, iphuk, phikphu, thikhut . . .

CON: FAITH

Description length: |Ginitial|+|D|Ginitial| = 4, 359+160, 000 = 164, 359



CHAPTER 3. SIMULATION RESULTS 52

b. Final grammar:

Gfinal =


LEX: {a, i, u, p, t, k};up, ti, kat, ipuk, pikpu, tikut . . .

CON: ∗[+stop][−cons]� FAITH � MAX([−spread glottis])

Description length: |Gfinal|+|D|Gfinal| = 3, 402+160, 000 = 163, 402

The final grammar includes a markedness constraint that militates against se-

quences of a stop followed by a vowel (∗[+stop][−cons]) and a MAX([−spread glottis])9

constraint that ensures that aspiration is the only possible repair. Aspiration is en-

tirely removed from the lexicon and inserted by the grammar in the right context.

In the tableau presented below, candidates (a), (c), and (d) demonstrate the role

played by the markedness constraint, while candidates (e) and (f) show the signif-

icance of the learned MAX constraint in preventing overgeneration.

9The feature [−spread glottis] constitutes the simplest choice for the learner to make here: it
is the only way to refer to all underlying segments by using one feature.
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(22)

/kat/ ∗[+stop][−cons] MAX([−spread glottis]) FAITH

a. kat *!

b. + khat *

c. ktat *! *

d. kiat *! *

e. at *! *

f. kt *! *

g. khath **!

· · ·

The segmental inventory has been restricted to {a, i, u, p, t, k}, blocking aspi-

ration in other contexts as expected; since aspiration cannot be used to describe

underlying segments, no UR can derive forms like ∗ath and ∗khikht. In the ex-

amples provided to the learner as part of the simulation, aspiration of p in ip and

of k in phikphu would be ungrammatical. The allophonic distribution has been

learned as expected.

3.4 Optionality

The tension between economy and restrictiveness becomes particularly clear in

cases that involve optional phonological processes. The significance of option-

ality to learnability was articulated by Baker (1979) and Dell (1981), who noted

that optionality leads an economy-only evaluation metric, such as that provided

in SPE, directly into the subset problem. In this section we present a learning
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simulation modeled after one of Dell’s cases and demonstrate how MDL provides

the desired remedy when optionality is concerned.

Let us first consider a concrete example, a modified version of one of Dell’s

French examples, before moving on to state the problem more generally.10 Con-

sider a grammar that handles consonant clusters as follows: an unfavorable se-

quence C1C2 is optionally resolved by either i epenthesis between the two con-

sonants or by C2 deletion. A UR like /tabl/ would surface either as [tabil] or as

[tab]. In addition, the grammar generates surface forms that appear as if they could

have been derived by the same process, but in fact they are not. For example, the

UR /paril/ is faithfully mapped into [paril], whereas ∗[par] is ungrammatical.

A learner exposed to {[tabil], [tab], [paril]} would face an instance of the sub-

set problem. On the one hand, it would be justified in making the generalization

that [tabil] and [tab] are generated from the same UR. A learning strategy based

solely on economy would succeed in making this inductive leap: a grammar that

includes one UR (/tabl/) can be more economical than a grammar that has two

URs (/tabil/ and /tab/), even at the cost of introducing the relevant rule or con-

straint. On the other hand, if only economy is taken into consideration, a UR like

/parl/ that is strictly simpler than an alternative /paril/would be preferred. Such

a grammar would correctly generate [paril] from /parl/, but since a consonant

cluster could be optionally resolved by deletion, that grammar would also generate

10We have revised the example to allow an easy formulation of optionality in the OT framework.
In OT, optionality could arise when URs have more than one optimal output. Instead of dealing
with a process that optionally takes place (but might not apply), we chose to handle a case where
a markedness constraint could be resolved by two distinct repairs that are equally penalized.



CHAPTER 3. SIMULATION RESULTS 55

the ill-formed ∗[par]. The process involving optionality, which we will refer to as

P , should not be extended to operating on the UR of [paril]. Our target grammar,

Gtarget, is strictly simpler than the overly restrictive identity grammar Gidentity,

but it has a strictly simpler alternative, call it Gsimple, that overgeneralizes:

(23) a. Gsimple (economy only; overgeneralizing): Admits an overly permis-

sive version of P .

b. Gtarget (economy and restrictiveness balanced; correct): Admits an

appropriately restricted version of P .

c. Gidentity (restrictiveness only; complex grammar; under-generalizing):

Does not admit P .

The problem faced by the learner, then, is to generalize beyond the data (by

applying P ’s operation to /tabl/), but to prevent excessive generalization (by pre-

cluding P ’s operation on the UR of [paril], which would generate the ungram-

matical ∗[par]).11

In terms of MDL, minimizing the size of the grammar would generally be

beneficial unless it is counterbalanced by an increased length of data encoding

given the grammar. Having to make more choices in the face of optionality re-

sults in such an increase, as we saw in chapter 2 for the case of ab-nese. In the

case discussed here, the dissimilar grammatical treatment of superficially similar

11In Dell’s original paper, only hypotheses corresponding to Gsimple and Gtarget are consid-
ered. Dell proposes a learning strategy that always favors grammars that are more restrictive, and
this strategy works well for cases in which these are the only choices. As we have seen, how-
ever, such a strategy will not work in a more general setting: it will have no reason to reject the
problematic Gidentity, which does not generalize at all, in favor of Gtarget.
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surface forms (tabil vs. paril) is a consequence of differences in the compression

benefits that each one provides. Encoding [tabil] as the output of /tabl/ would

require paying one bit of information to specify its choice over [tab]. Generally,

collapsing [tabil] and [tab] into a single UR would allow enough compression to

justify the cost of optionality, while the slight compression gained by eliminating

a single vowel i from /paril/ would not.

We will now show that our learner converges on the correct Gtarget, to which

the MDL evaluation metric assigns the best score. Moreover, it will do so without

being told which forms (if any) should be collapsed. Since our intention in this

subsection is to present a proof-of-concept learning of restricted optionality, we

will deviate from our earlier setting and provide the learner with the final con-

straint set in advance. To keep with our previous assumptions, the initial ranking

of the constraints will be a faithful one. The feature table is presented in (24).

(24)

cons high stop son voice labial liquid

a - - - + + - -

i - + - + + - -

b + - + - + + -

p + - + - - + -

d + - + - + - -

t + - + - - - -

l + - - + + - +

r + - - + + - -

The data consisted of three pairs (tabil, tab, tapil, tap, labil, lab) that were to
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be collapsed and two unpaired forms (paril, radil). Each surface form was pre-

sented 25 times to the learner. In the final grammar, the learner has correctly

collapsed each pair into one UR by arriving at a suitable constraint ranking. As

expected, the vowel i has not been removed from the unpaired forms, despite the

benefit in economy that this move could have afforded.

(25) a. Initial grammar:

Ginitial =


LEX: tabil, tab, paril, tapil, tap, radil, labil, lab

CON: FAITH � DEP([−high])� MAX([−liquid])� ∗[+cons][+cons]

Description length: |Ginitial|+ |D|Ginitial| = 589 + 600 = 1189

b. Final grammar:

Gfinal =


LEX: tabl, paril, tapl, radil, labl

CON: ∗[+cons][+cons]� FAITH � DEP([−high])� MAX([−liquid])

Description length: |Gfinal|+ |D|Gfinal| = 415 + 750 = 1, 165

The following tableau demonstrates the final grammar at work:
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(26)

/tabl/ ∗[+cons][+cons] FAITH DEP([−high]) MAX([−liquid])

a. tabl *!

b. + tab *

c. tal * *!

d. + tabil *

e. tabal * *!

· · ·

Significantly, the overgenerating Gsimple presented above would have led to a

longer description length compared to the correct hypothesis: as shown in (27), by

removing all underlying instances of i the grammar itself would have been more

economical, but the overall description length would have been higher.

(27) Overgenerating grammar:

Gsimple =


LEX: tabl, parl, tapl, radl, labl

CON: ∗[+cons][+cons]� FAITH � DEP([−high])� MAX([−liquid])

Description length: |Gsimple|+ |D|Gsimple| = 387 + 800 = 1, 187

/parl/ ∗[+cons][+cons] FAITH DEP([−high]) MAX([−liquid])

a. parl *!

b. * par *

c. + paril *

· · ·
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3.5 Alternations

In previous examples we considered phonological grammars that map URs to sur-

face forms regardless of the contexts they appear in. Our next step will be to

show that our learning criterion extends naturally to learning morphophonologi-

cal alternations. We will examine the behavior of our learner on a dataset created

by concatenating a suffix to a base set of forms. A phonological process would

change some of those forms at the boundary, resulting in forms that are realized

differently in two different contexts: such forms would surface faithfully when

occurring independently but would be phonologically altered in the environment

of the suffix. To illustrate the procedure, consider the Hebrew verbs katav ‘write’

and daag ‘worry’ along with the 2nd person feminine suffix −t. Assuming that

Modern Hebrew speakers’ obstruents assimilate in voicing to a following obstru-

ent, our dataset would include katav, kataft, daag, and daakt. Our learner will

know neither about the morphological constituency of these forms nor that pairs

of them are derivationally related. Instead, we will allow the learner to perform

segmentation and represent suffixes as part of the lexicon. In addition, following

the lead of Goldsmith (2001), URs will be allowed to be stored with pointers to

suffixes that they attach to (a pointer from a UR to a suffix means that both the

UR itself and the UR combined with the suffix can be inputs to the grammar). If

our view of learning as compression is correct, morphophonological alternations

should fall out as by-products of two distinct mechanisms: phonological induc-

tion, which we have seen in previous sections, and segmentation, which we will
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now introduce. Thus, if the learner is provided with enough examples, a grammar

like the following, presented schematically, should lead to a shorter description

length compared to a naive grammar that memorizes the data and captures no

generalizations:

(28)

G =


LEX: katav{−t}, daag{−t}; Suffixes:{t}

CON: assimilation-enforcing constraint ranking

In other words, compressing the lexicon by collapsing multiple surface forms

into a single UR would justify, in terms of total description length, the addition

of assimilation-enforcing constraints to CON along with their appropriate rank-

ing. Let us see how this prediction is borne out, using a small dataset of eight

words, generated according to the procedure described above. In (29) below, four

basic words have been concatenated with a suffix−t, triggering two phonological

processes. In 1-2 and 3-4, suffixation results in regressive obstruent devoicing.

In 5-6, two adjacent coronals are separated by e epenthesis, thus blocking voic-

ing assimilation. In 7-8, none of the two environments is met and the basic form

remains unchanged.

(29)
1) katav 3) daag 5) rakad 7) takaf

2) kataft 4) daakt 6) rakadet 8) takaft

As in section 3.4, we provide the learner with the final constraint set in ad-

vance for the present simulation. We also do not incorporate the costs of suffixes

and pointers to them. See Goldsmith (2001) for much relevant discussion of how
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such costs can be taken into account. Here, GEN is allowed to arbitrarily change

segments in addition to inserting and deleting, and the search procedure is ex-

tended to perform the following additional moves in the hypothesis space: create

suffix, remove suffix, add pointer, remove pointer. The feature table in (30) was

provided to the learner.

(30)

cons voice high labial coronal ATR rhotic

a - + - - - - -

I - + + - - - -

e - + - - - + -

t + - - - + - -

d + + - - + - -

g + + + - - - -

k + - + - - - -

v + + - + - - -

f + - - + - - -

r + + - - + - +

The learner’s task in this case, then, is threefold: to discover the −t suffix

by performing segmentation; to learn a constraint ranking that enforces regressive

devoicing and epenthesis between coronal consonants; and to collapse pairs of sur-

face forms into a single UR, without knowing in advance which forms should be

collapsed. In the results presented below, all three goals have been reached. Note

that the grammar includes the markedness constraints ∗

 +cons

+voice

 [−voice] and
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∗[+coronal][+coronal] that trigger voicing and epenthesis respectively. All other

constraints, when appropriately ranked, enable the elimination of losing candi-

dates.

(31) a. Initial grammar:

Ginitial =



LEX: katav, daag, rakad, takaf, kataft, daakt, rakadet,

takaft; Suffixes:{}

CON: FAITH � MAX([+cons])� DEP([−ATR])� IDENT([−voice])�

� IDENT([+cons])� IDENT([+labial])� IDENT([−labial])�

� IDENT([−high])� IDENT([+high])� ∗[−coronal][+ATR]�

� ∗[+coronal][+coronal]� ∗

 +cons

+voice

 [−voice]

Description length: |Ginitial|+ |D|Ginitial| = 864 + 24 = 888
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b. Final grammar:

Gfinal =



LEX: katav{−t}, daag{−t}, rakad{−t}, takaf{−t}; Suffixes:{t}

CON: ∗

 +cons

+voice

 [−voice]� ∗[−coronal][+ATR]�

� ∗[+coronal][+coronal]� IDENT([−high])� IDENT([−voice])�

DEP([−ATR])� FAITH � IDENT([+labial])� MAX([+cons])�

IDENT([−labial])� IDENT([+cons])� IDENT([+high])

Description length: |Gfinal|+ |D|Gfinal| = 520 + 16 = 536



Chapter 4

Previous proposals

In the previous chapters we developed a proposal for learning in OT. We started

by constructing the MDL evaluation metric as part of a discovery procedure for a

working phonologist. We saw how compression provides a unifying framework

for balancing economy and restrictiveness. We then motivated the use of the very

same evaluation metric as a model of the child learner despite the differences –

mostly in hypothesis space and in the availability of negative evidence – between

the phonologist and the child. We explained why we thought that MDL-based

learning is what the child has by virtue of having UG, along with the ability to

entertain at least one additional hypothesis at any given time and the ability to

traverse the hypothesis space in an appropriate manner. If this reasoning is cor-

rect, any deviation would need empirical justification. We proceeded to present a

proof-of-concept demonstration of our learner across different datasets, showing

its successful learning with ab-nese, a toy language with English-like aspiration,

64
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a language with French-like restricted optionality, and a morphophonological pat-

tern based on Modern Hebrew.

In the present chapter we will use the perspective provided by the evaluation

metric to take a critical look at previous learning algorithms that have been pro-

posed in the literature on OT. We start, in section 4.1, by briefly reviewing the

main efforts in the literature, efforts that, as we will explain, have a somewhat

different focus from our own. The next two sections concern proposals that are

much closer to ours: Maximum-Likelihood Learning of Lexicons and Grammars

(Jarosz, 2006b,a, 2010), discussed in section 4.2; and Lexical-Entropy Learner

(Riggle, 2006), discussed in section 4.3. We will see that each proposal targets

one of the two criteria of economy and restrictiveness but not both, leading to

challenges of the kind discussed above for the scientist. Our own proposal, pre-

sented earlier, can thus be seen as subsuming both, balancing in a principled way

between the two biases.

4.1 Constraint re-ranking approaches

As mentioned in the introduction, the literature on OT has taken considerations

of learning very seriously. Obviously, we will not be able to do justice to all the

relevant literature within the scope of this thesis. For the most part, however, this

literature has concerned itself with questions that are quite different from those

motivating the present proposal. Specifically, some of the most influential propos-

als, such as Recursive Constraint Demotion (RCD; Tesar and Smolensky, 1998,
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2000), Biased Constraint Demotion (BCD; Prince and Tesar, 2004), the Gradual

Learning Algorithm (GLA; Boersma and Hayes, 2001), and the Maximum En-

tropy model of Goldwater and Johnson (2003), assume that the learner has access

to pairs of URs and surface forms (as well as a finite inventory of universal con-

straints). Clearly, these works do not suppose that the child is given these pairs

explicitly by the environment. Rather, we are to think of such proposals as part

of a bigger system that includes also a learner for the pairings of URs and surface

forms. Since it is integrated learners for both constraint rankings and lexicons that

we are interested in, we hope that for the time being it is reasonable to set aside

proposals of this kind that rely on an unspecified learner to obtain pairings of URs

and surface forms.

Among constraint re-ranking approaches, there is one family of proposals,

which we will refer to as paradigm-based lexicon learners, in which constraint re-

ranking is combined with some lexical learning. These proposals, which include

Tesar (2006, 2009), Apoussidou (2007), Merchant (2008), and Akers (2012), have

the following in common: they all use paradigms to extract information about

alternations, which in turn supports the learning of properties of URs. Consider,

for example, a language like German in which a voicing contrast in obstruents

is neutralized word finally. Given a pairing of paradigmatically related surface

forms such as rat ‘wheel.SG’ and [red5] ‘wheel.PL’, paradigm-based learners may

conclude that the UR in both cases is /rad/; in particular, the UR is non-identical

to the surface form [rat]. Outside of alternations, paradigm-based learners posit

URs that are identical to the surface forms, thus following the principle of Lexicon



CHAPTER 4. PREVIOUS PROPOSALS 67

Optimization (Prince and Smolensky, 1993; Inkelas, 1995).

Alternations are a central source of information, and we agree with the paradigm-

based approach that this source should not be overlooked. For example, it is hard

to think of a different basis for learning that the UR for ‘wheel’ in German is

/rad/ while that of ‘council, advice’ is /rat/: the surface form in both cases is

[rat]; but the plural form of ‘wheel’ is [red5], while that of ‘council’ is [ret@].

However, while alternations are undoubtedly important in discovering URs, they

are a special case of a more general phenomenon and would ideally fall out of

whatever mechanism handles the induction of phonological patterns and of the

lexicon. The MDL learner that we presented above treats alternation-based learn-

ing as exactly this kind of special case, as we have tried to show in section 3.5.

Paradigm-based learners, on the other hand, treat alternations as a world unto it-

self. Not surprisingly, then, the paradigm-based learners in the literature offer no

obvious generalization for properties of URs that do not involve alternations.

The challenge for constraint re-ranking and Lexicon Optimization has been

discussed by Alderete and Tesar (2002), McCarthy (2005), and Krämer (2012),

who show that constraint re-ranking learners – whether paradigm-based or not

– must be modified so as to learn non-identical mappings from surface forms to

non-alternating URs. McCarthy discusses evidence from languages like Choctaw,

Japanese, Rotuman, and Sanskrit, in which some non-alternating URs are claimed

to be distinct from their surface forms. McCarthy suggests that, in these lan-

guages, non-identical mappings in alternating forms are extended to non-alternating

forms. Krämer (2012) discusses this and other ways in which non-identical map-
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pings can be inferred for non-alternating forms. At present, however, these ideas

have yet to be turned into explicit learners, leaving the task of learning non-

identical mappings for non-alternating forms as a challenge for constraint re-

ranking approaches, including paradigm-based learners.

But regardless of whether or not it turns out to be feasible to use informa-

tion from alternations to infer non-idential mappings in non-alternating forms,

Alderete and Tesar (2002) make an even stronger claim: that non-trivial learning

must take place even in the absence of alternations, based on stress-epenthesis in-

teractions in languages like Yimas, Mohawk, and Selayarese. For a particularly

transparent example of learning without alternations recall the case of ab-nese and

in particular the discussion of how the constraint *bb might interact with a hypo-

thetical pattern, considered in section 2.1 above, of lengthening of the penultimate

segment words. We noted that a surface form such as [aab : ab], with penultimate

lengthening, would provide support to /aabb/ as the corresponding UR. There

was no alternation involved to help with this inference, and none was needed. A

real-world counterpart of the artificial ab-nese example is the interaction of stress

and epenthesis in Yimas, used by Alderete and Tesar (2002) to argue explicitly

for learning non-identical mappings from surface forms to URs even in the ab-

sence of supporting alternations. Until a paradigm-based learner is proposed that

generalizes beyond alternations, we conclude that, like the constraint re-ranking

approaches mentioned above, such learners can be set aside within the context

of the present discussion. We now turn to two learners that, contrasting with con-

straint re-ranking approaches, support the learning of non-identical mappings also
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for non-alternating forms.

4.2 Maximum-Likelihood Learning of Lexicons and

Grammars

Jarosz (2006b,a) proposes an algorithm, Maximum-Likelihood Learning of Lex-

icons and Grammars (MLG), for learning lexicons and constraint rankings based

on the principle of Maximum Likelihood (ML). Working within a probabilistic

version of OT, Jarosz assumes that a hypothesis is a distribution over constraint

rankings coupled with a distribution over URs for each morpheme.1 The learner

is given the set of constraints in advance (either as part of the innate component

or perhaps through a separate module for learning constraints), along with can-

didate URs for each morpheme. The learner then attempts to find the hypothesis

that maximizes the likelihood of the data. The search starts with an uncommitted

lexicon, in which all candidates for any given morpheme are equally likely, and

the search for the best hypothesis is performed by the Expectation Maximization

algorithm (EM; Dempster et al., 1977).

Let us demonstrate with a simple variation on ab-nese in which we have the

same data sequence as in (1) above but are restricted to working with the con-

straints *ab, *p, and IDENT, all three of which are given to us in advance; we

will also assume the knowledge that b has p as a featural variant and that a has e.

1This probabilistic version of OT is distinct from Stochastic OT (Boersma, 1998; Boersma and
Hayes, 2001).
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The learning process will start with the hypothesis that for any given morpheme,

all possible URs are equally likely. That is, the initial hypothesis provides the

following distribution over the lexicon (along with a distribution over the possible

rankings of the constraints):

(32) a. M1 =(ab) URs: ab (.25); ap (.25); eb (.25); ep (.25)

b. M2 =(bab) URs: bab (.125); bap (.125); beb (.125); pab (.125); bep

(.125); pap (.125); peb (.125); pep (.125)

c. M3 =(aaab) URs: aaab (.0625); aaap (.0625); aaeb (.0625); aeab

(.0625); eaab (.0625); aaep (.0625); . . .

d. M4 =(aabab) URs: . . .

e. M5 =(baab) URs: . . .

f. M6 =(aababaaaabab) URs: . . .

g. M7 =(babababaa) URs: . . .

h. M8 =(babababababaabab) URs: . . .

On Jarosz’s assumptions, the correct morpheme for each surface form has been

identified in advance and is available to the learner. Using this knowledge, each

hypothesis defines a probability distribution over surface forms that can be com-

puted by enumerating the possible URs and the different constraint rankings. Take

the surface form ab, for example: suppose we encounter it in a certain position in

the data, and suppose further that this position has been correctly identified as ex-

pressing the morpheme M1. Our goal is to compute its likelihood, and we do this

by enumerating the different URs that M1 is associated with – in this case, ab, ap,



CHAPTER 4. PREVIOUS PROPOSALS 71

eb, and ep – and by computing the conditional probability of the surface form ab

given each of the URs; the final answer is the weighted sum of these conditional

probabilities, each weighted by the probability of the relevant UR:

(33) The likelihood of the surface form ab given that the morpheme is M1

P (surface = ab|M1) =
∑

u∈{ab,ap,eb,ep}

P (surface = ab|u)P (u)

The probabilities of the different URs are part of each hypothesis. For exam-

ple, in the initial hypothesis (32), the distribution is uniform, with each UR forM1

having a probability of 0.25. What remains is the computation of P (surface =

ab|u) for any particular UR. This is done by looking at the different constraint

rankings and their probabilities (again, part of every hypothesis). Let us look at

how this is done for the UR ab:

(34)

Hypothesis H Probability under input ab

Ranking ri P (ri) Optimal Ok

r1 *ab� *p� IDENT 0.2 eb

r2 *ab� IDENT � *p 0.15 eb

r3 IDENT � *ab� *p 0.05 ab

r4 *p� *ab� IDENT 0.1 eb

r5 *p� IDENT � *ab 0.0 ab

r6 IDENT � *p� *ab 0.5 ab

The probability of the surface form ab given the UR ab is obtained by sum-

ming over the rows in which the surface form ab is the winner. In the present case,
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these are the third, fifth, and sixth rows: P (r3) + P (r5) + P (r6) = 0.05 + 0.0 +

0.5 = 0.55. By repeating the computation with the other possible URs for M1 we

obtain the required values to compute the likelihood of the surface form ab given

M1 according to (33).

ML addresses the restrictiveness requirement directly: any overgeneration will

lead to spending probability mass on forms that do not occur.2 An ML grammar

is thus a fully restrictive one. Meanwhile, starting from an uncommitted lex-

icon as in (32) encourages the learner to consider hypotheses that rely on the

constraints – rather than on accidents of the lexicon – to encode patterns in the

input data. Such hypotheses are in line with the OT principle of ROTB. From

an information-theoretic perspective, an uncommitted lexicon is one with high

entropy. As we will see in the next section, lexicon entropy (though in differ-

ent form from Jarosz’s) can sometimes stand proxy for economy, both criteria

sometimes favoring a smaller lexicon from which significant patterns have been

extracted over a more complex one in which those patterns remain.

We saw in section 2.2 above that restrictiveness must be simultaneously bal-

anced against economy in order to provide an adequate evaluation of hypotheses,

and we discussed the problematic results of unchecked restrictiveness. Despite

the entropic starting point, we believe that MLG suffers from the same problem.

Let us start by recalling the dangers of pure restrictiveness. Without the balancing

force of economy, restrictiveness will make the learner attempt a full memoriza-

tion of the data. If the learner can memorize the entire sequence of data, it will

2This closely mirrors the minimization of |D|G| alone under a description-length approach.
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do so. The only thing that can stop it is its own representational limitations. For

example, if it cannot represent the order of elements in the input data, it will have

to resort to an approximation.3 In our modified ab-nese case, the following hy-

pothesis will receive likelihood 1, the highest possible score:

(35) a. M1 =(ab) URs: ab (1); ap (0); eb (0); ep (0)

b. M2 =(bab) URs: bab (1); bap (0); beb (0); pab (0); bep (0); pap (0);

peb (0); pep (0)

c. M3 =(aaab) URs: aaab (1); aaap (0); aaeb (0); aeab (0); eaab (0);

aaep (0); . . .

d. M4 =(aabab) URs: aabab (1) . . .

e. M5 =(baab) URs: baab (1) . . .

f. M6 =(aababaaaabab) URs: aababaaaabab (1) . . .

g. M7 =(babababaa) URs: babababaa (1) . . .

h. M8 =(babababababaabab) URs: babababababaabab (1) . . .

(36) IDENT� *ab� *p

The hypothesis summarized in (35) and (36) is clearly not what we want: it

has simply memorized the data, leaving the absence of p as an accident of the (un-

compressed) lexicon. By Jarosz’s ML criterion, however, this hypothesis obtains

3What this approximation is varies. One option is to treat each element as being independently
drawn from the lexicon according to a fixed probability distribution. An ML learner that makes
such assumptions will memorize the empirical distribution of the elements in the data. The as-
sumptions behind the MLG are somewhat different: here the learner operates on the output of a
morpheme analyzer, which leaves the ML learner the task of determining the conditional proba-
bilities along the lines discussed earlier.
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a perfect score; other contenders can at most obtain a tie with this memorized

hypothesis. This problem is quite general: as long as we can list the observed

surface forms as having probability 1 (and as long as we can rely on morpheme

identification, as in Jarosz’s examples), the MLG will give likelihood 1 to the

fully memorized hypothesis, using the ranking of faithfulness over markedness.

Going back to our original ab-nese case, ML will see no benefit in squeezing

*bb out of the lexicon and into the constraints. In English, the same will hold

with respect to aspiration: if IDENT outranks the other constraints, a lexicon that

memorizes the surface forms with probability 1, including aspiration, will give

the data likelihood 1 (again, the highest possible score). We will thus be left

without an account of why speakers of English fail to notice the difference be-

tween the aspirated th in ‘tack’ and the unaspirated t in ‘stack’.4 Worse, there will

never be any generalization. As we discussed in section 2.2 above, restrictiveness

alone will fail on any input sequence that shows a proper subset of the possible

forms. Earlier we demonstrated this for the phonologist in the case of zab-nese, in

which any nonnegative number of z’s can precede any word. As we discussed, a

restrictiveness-only phonologist will fail to make this generalization, memorizing

instead the finite subset of the infinite allowable z-forms seen so far and assign-

ing zero probability to any of the accidental gaps in the input data. The MLG,

similarly aiming for restrictiveness only, will run into the very same problem.

4If we are interested in learning the constraints themselves – as we were in our own learning
examples – the inability of the ML learner to benefit from compressing the lexicon will be even
more noticeable: a hypothesis with a listing of the surface forms (each with probability 1) and a
single faithfulness constraint will always be optimal.
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What about the uncommitted initial state as a cure for memorization? In

Jarosz’s examples, the learner does not end up memorizing the input data, and we

mentioned that the uncommitted initial state of the MLG is designed to encourage

the learner to be reasonable. Unfortunately, such encouragement is generally short

lived. It affects the beginning of the search, but if the search is capable enough, the

ML criterion will necessarily lead the learner to a maximally memorized hypoth-

esis. That Jarosz’s examples do not exhibit such memorization we must attribute

to peculiarities of the search procedure. The EM algorithm is known to get caught

in local optima, which could account for these results. Moreover, it is possible

that the search has stopped before convergence. Since modeling the search goes

beyond the goals of current research, we conclude that the entropic initial state is

not capable of rescuing ML as the learning criterion for the child.

4.3 Lexical-Entropy Learner

We just saw that an uncommitted – or entropic – initial state does little to help

the learner. Assuming that an entropic lexicon is indeed a relevant property of

good hypotheses, the remedy seems clear: turn the requirement into an active

force by incorporating it into the learning criterion. This is exactly what Riggle

(2006) proposes. On Riggle’s account, different grammar and lexicon hypotheses

are evaluated according to a measure of lexicon entropy. The measure, which is

somewhat different from Jarosz’s and which we will discuss shortly, is based on

the following principle:
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(37) Lexicon entropy principle: Assume a universal constraint set CON. When-

ever faced with a decision as to whether to encode a phonological pattern

as a consequence of constraint interaction or as an accident of the lexicon,

the former option must be taken. (Modified from Riggle, 2006, p. 347.)

Riggle proposes the evaluation of a grammar G according to the conditional

entropy of G’s lexicon, defined in terms of bigrams as follows:

(38)

H(G) = −
∑
x∈Σ

∑
y∈Σ

P (x, y) logP (y|x)

Given two hypotheses consistent with the data, the learner is expected to pre-

fer the one for which H(G) is higher. As an example of how this should work,

consider again the ab-nese data from section 2.1, and the three constraints *bb,

MAX, and DEP. We will show why Riggle’s metric rejects the identity hypothesis

in favor of the correct lexicon and ranking combination. The data are repeated

here, along with the two competing hypotheses:5

(39) Hypothesis 1 (identity)

Lexicon:

1) /ab/ 3) /aaab/ 5) /abaab/ 7) /babababaa/

2) /bab/ 4) /aabab/ 6) /babaaaa/ 8) /babababababaabab/
Corresponding ranking: any

Entropy: 0.63

5Note that Riggle’s version applies to lean lexicons, in which lexical entries are single URs,
rather than the rich lexicons of Jarosz’s system, in which lexical entries are distributions over
possible URs.
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(40) Hypothesis 2 (correct)

Lexicon:

1) /ab/ 3) /aaab/ 5) /abaab/ 7) /bbbbaa/

2) /bb/ 4) /aabb/ 6) /bbaaaa/ 8) /bbbbbb/
Corresponding ranking: *bb, MAX� DEP

Entropy: 1.55

The lexicon of hypothesis 1 is identical to the surface data. Under any ranking

of the three constraints, all underlying representations would surface unchanged.

The generalization that a sequence bb is prohibited in ab-nese is captured only as

an accident of the lexicon. As a consequence, the lexicon contains predictable in-

formation that can be identified by computing probabilities of adjacent segments:

after seeing a b, there is a probability of 1.0 that a following segment be a. For-

mally, −P (b, b) logP (b|b) and −P (b, a) logP (a|b) will both be null (assuming

here for simplicity’s sake that 0 log 0 = limx→0 x log x = 0), not adding to the

entropy of the lexicon, which results in 0.63.

On the other hand, the second hypothesis has the predictable information about

the absence of bb sequences removed from the lexicon, resulting in a more irregu-

lar lexicon: seeing a consonant or a vowel, it is hard to predict what the next seg-

ment would be. Here, all summands contribute to the measure of entropy, which

sums to 1.55 — a higher entropy than that of the identity hypothesis. Importantly,

given the lexicon of the second hypothesis, a sequence bb must be resolved by

vowel epenthesis, entailing the more restrictive ranking *bb� DEP.
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We can see that Riggle uses entropy as a proxy for economy. In his proposal,

entropy is the only factor in the learning criterion. In particular, there is no pres-

sure for restrictiveness. This choice leads to the subset problem, the problem

discussed earlier for the scientist using the original SPE evaluation metric and the

mirror image of the problem for Jarosz’s proposal. To see this, let us consider first

a version of Riggle’s proposal for ab-nese in which the constraints are not given

in advance and must be learned. In the absence of a pressure for restrictiveness,

an entropic but overgenerating grammar like the following will fare much better

than the correct grammar:

(41) Hypothesis 3 (no constraints; entropic; overgenerates)

Lexicon: /aabba/

Corresponding ranking: (NONE: no constraints to rank)

Entropy: 0.63

In Lexicon 3, the bigram distribution is uniform: P (x|y) is the same (= 0.5)

for any x and y. It is thus maximally entropic. At the same time, it massively

overgenerates: in the absence of any constraints, the single UR /aabba/ can be

mapped to any of the attested forms but also to any other form, all without incur-

ring a single violation. In this case, then, entropy alone exposes the learner to the

subset problem, just as economy alone exposed the scientist to this problem in our

discussion earlier.

In Riggle’s actual proposal, the constraints are given to the learner in advance.

With a judicious choice of constraints, the subset problem is ameliorated, but we
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will show that it does not disappear completely. Let us continue with our ab-nese

example, and let us assume that the learner is given the set of constraints that

our phonologist from chapter 2 arrived at. In this case, Lexicon 3 is no longer

appropriate (since it does not generate the data), but the following overgenerating

hypothesis is just as entropic as the intuitively correct Hypothesis 2:

(42) Hypothesis 4 (overgenerates)

Lexicon:

1) /ab/ 3) /aaab/ 5) /abaab/ 7) /bbbbaa/

2) /bb/ 4) /aabb/ 6) /bbaaaa/ 8) /bbbbbb/
Corresponding ranking: *bb� MAX, DEP

Entropy: 1.55

Hypothesis 4 keeps the ranking *bb� DEP, but it has MAX ranked together

with DEP rather than above it. As a result, all the correct surface forms are still

generated from the intuitively correct lexicon, but along with them we will also

find unattested forms such as b (from the UR bb), generated through b-deletion.

This is an overgeneration problem: as long as URs with the sequence bb are cho-

sen with nonzero probability, the hypothesis wastes probability mass on forms

such as b that will never actually occur. Since lexicon entropy does not take re-

strictiveness into account, such overgeneration will not lead to Hypothesis 4 being

dispreferred.6

6Allowing MAX and DEP to be ranked together is in line with certain variants of OT – see,
in particular, Anttila (2007), who argues for the use of such rankings to account for optionality; a
similar state of affairs is also possible within Stochastic OT (Boersma, 1998; Boersma and Hayes,
2001) – but we have chosen it here simply to make the presentation of the current point easier.
We could have made the same point while adhering to strict linear orderings of the constraints, for



CHAPTER 4. PREVIOUS PROPOSALS 80

In order to assess the suitability of entropy as a pressure on hypotheses, then,

we must combine it with a pressure for restrictiveness. A natural way to accom-

plish this is by combining it with Jarosz’s ML criterion. There are many different

ways to combine two criteria into one, and many of these (such as maximizing the

sum – or the product – of the likelihood of the data and the entropy of the lexicon)

will address the problem of overgeneration without degenerating into memorizing

the input data.

Unfortunately, no combination of this kind can work. To see why, consider

again the two lexicons for ab-nese that seemed to justify the entropy criterion.

Lexicon 1 was more complex and less entropic than Lexicon 2, which seemed

encouraging. But consider now Lexicon 5, a lexicon based on c-deletion rather

than a-insertion:

(43) Hypothesis 5 (entropic and restrictive; presumably bad)

Lexicon:

1) /cacbc/ 3) /caaaccb/ 5) /abaab/ 7) /babababaa/

2) /bab/ 4) /aabab/ 6) /babaaaa/ 8) /babababababaabab/
Corresponding ranking: *c, *bb, DEP� MAX

Entropy: 1.578

Lexicon 5 is more complex still than Lexicon 1 but it is more entropic than

either Lexicon 1 or Lexicon 2. In fact, infinitely many such lexicons are easily

example by considering a variant of ab-nese in which the following hold: two occurrences of b in
a row are okay; three are not; an underlying bbb sequence can be repaired by a single insertion
of a after the first occurrence of b but not after the second. A correct grammar would enforce
the positional requirement on the insertion of a. For Riggle, however, the ranking *bbb� MAX
� DEP will do just as well, despite the fact that it overgenerates by allowing an underlying bbb
sequence to surface both (correctly) as babb and (incorrectly) as bbab.
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constructed, each more pointlessly complex than the other and with higher en-

tropy. Note that all the hypotheses in this case are fully restrictive, so ML will not

help choose between them. The decision is down to entropy, and entropy leads us

astray: it only cares about making the grammar less regular, but this can be ac-

complished not just by removing orderly material, which is what we would like,

but also by adding disorderly material, which we would not. We conclude that

economy must be represented directly, as it is under MDL, rather than by proxy.



Chapter 5

Discussion

The evaluation metric of SPE expressed a hope: let the theoretical linguist focus

on building the right theory of UG; given that theory, the evaluation metric will

take the child from the initial state to adult knowledge using very general consid-

erations and the data at hand. Learning, in a sense, will take care of itself.

In the years that followed, that hope came to seem increasingly naive. The

evaluation metric foundered on the subset problem: any metric focusing exclu-

sively on economy would. The challenge of negotiating an infinite hypothesis

space did little to help. By the time OT arrived on the scene, the evaluation metric

was no longer actively pursued.

That original hope may have been abandoned too readily, as we have tried

to show in this thesis. The particular choice of the SPE metric was problematic,

but the MDL alternative from Solomonoff’s work addresses the challenges to the

SPE metric in a fully general way. At first glance, the compression criterion at the

82
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heart of Solomonoff’s metric can seem foreign from the perspective of linguistics.

We tried to show, however, that this criterion is in fact familiar from the everyday

work of the phonologist. We then presented the case for using this criterion as

the null hypothesis about the child’s learning criterion: given any theory of UG,

the ability to store grammars in memory and use them to parse the data already

provides the basis for using the MDL metric; anyone who wishes to argue that the

child is prevented from using this null criterion and instead uses some different

learning method would need to provide supporting evidence. We proceeded to

present several simulation results showing how the MDL metric can be used by a

learner trying to make sense of raw data. While clearly preliminary, these proof-

of-concept results – all of them new – show how lexicons can be induced, with

and without supporting data from alternations, and how the same metric extends

to learning the constraints themselves.



Appendix A

Data

A.1 ab-nese

a, ab, ba, bab, aa, aab, aba, abab, baa, baab, baba, babab, aaa, aaab, aaba, aabab,

abaa, abaab, ababa, ababab, baaa, baaab, baaba, baabab, babaa, babaab, bababa,

bababab, aaaa, aaaab, aaaba, aaabab, aabaa, aabaab, aababa, aababab, abaaa,

abaaab, abaaba, abaabab, ababaa, ababaab, abababa, abababab, baaaa, baaaab,

baaaba, baaabab, baabaa, baabaab, baababa, baababab, babaaa, babaaab, babaaba,

babaabab, bababaa, bababaab, babababa, babababab, aaaaa, aaaaab, aaaaba, aaaabab,

aaabaa, aaabaab, aaababa, aaababab, aabaaa, aabaaab, aabaaba, aabaabab, aababaa,

aababaab, aabababa, aabababab, abaaaa, abaaaab, abaaaba, abaaabab, abaabaa,

abaabaab, abaababa, abaababab, ababaaa, ababaaab, ababaaba, ababaabab, abababaa,

abababaab, ababababa, ababababab, baaaaa, baaaaab, baaaaba, baaaabab, baaabaa,

baaabaab, baaababa, baaababab, baabaaa, baabaaab, baabaaba, baabaabab, baababaa,
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baababaab, baabababa, baabababab, babaaaa, babaaaab, babaaaba, babaaabab,

babaabaa, babaabaab, babaababa, babaababab, bababaaa, bababaaab, bababaaba,

bababaabab, babababaa, babababaab, bababababa, bababababab, aaaaaa, aaaaaab,

aaaaaba, aaaaabab, aaaabaa, aaaabaab, aaaababa, aaaababab, aaabaaa, aaabaaab,

aaabaaba, aaabaabab, aaababaa, aaababaab, aaabababa, aaabababab, aabaaaa, aabaaaab,

aabaaaba, aabaaabab, aabaabaa, aabaabaab, aabaababa, aabaababab, aababaaa,

aababaaab, aababaaba, aababaabab, aabababaa, aabababaab, aababababa, aababababab,

abaaaaa, abaaaaab, abaaaaba, abaaaabab, abaaabaa, abaaabaab, abaaababa, abaaababab,

abaabaaa, abaabaaab, abaabaaba, abaabaabab, abaababaa, abaababaab, abaabababa,

abaabababab, ababaaaa, ababaaaab, ababaaaba, ababaaabab, ababaabaa, ababaabaab,

ababaababa, ababaababab, abababaaa, abababaaab, abababaaba, abababaabab, ababababaa,

ababababaab, abababababa, abababababab, baaaaaa, baaaaaab, baaaaaba, baaaaabab,

baaaabaa, baaaabaab, baaaababa, baaaababab, baaabaaa, baaabaaab, baaabaaba,

baaabaabab, baaababaa, baaababaab, baaabababa, baaabababab, baabaaaa, baabaaaab,

baabaaaba, baabaaabab, baabaabaa, baabaabaab, baabaababa, baabaababab, baababaaa,

baababaaab, baababaaba, baababaabab, baabababaa, baabababaab, baababababa,

baababababab, babaaaaa, babaaaaab, babaaaaba, babaaaabab, babaaabaa, babaaabaab,

babaaababa, babaaababab, babaabaaa, babaabaaab, babaabaaba, babaabaabab, babaababaa,

babaababaab, babaabababa, babaabababab, bababaaaa, bababaaaab, bababaaaba,

bababaaabab, bababaabaa, bababaabaab, bababaababa, bababaababab, babababaaa,

babababaaab, babababaaba, babababaabab, bababababaa, bababababaab, babababababa,

babababababab
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A.2 Aspiration

ak, ap, it, up, khu, phi, phu, thi, khat, khit, khup, phit, phup, thik, thip, thit,

akhap, akhik, aphap, aphat, aphik, aphip, athit, athuk, ikhak, iphap, iphik, iphip,

iphuk, iphup, ithap, ithit, khaat, khaik, khait, khauk, khaup, khiap, khiat, khiuk,

khuap, phaik, phait, phaut, phiik, phiit, phuat, phuik, phuit, thait, thauk, thiup,

ukhak, ukhut, uphik, uphip, uphut, uthup, khakhu, khipha, khukhu, phakhi, phakhu,

phaphu, phatha, phikhu, phukhu, phuphu, thakhi, thatha, thathu, thikha, thikhi,

thiphu, thuthu, khakhat, khakhup, khakhut, khakpha, khaktha, khaphuk, khaphup,

khapkhi, khapphi, khapphu, khapthi, khathut, khatkhu, khatpha, khattha, khikhak,

khikhap, khikpha, khikphi, khikthi, khiphak, khiptha, khipthi, khithap, khithat, khithik,

khithit, khitpha, khittha, khitthi, khitthu, khukhak, khukhip, khukhit, khukkha, khukkhi,

khuktha, khukthi, khuphap, khuphik, khuphip, khuphuk, khupkha, khuppha, khupphi,

khupphu, khuthak, khutpha, khutphi, khuttha, phakhak, phakhap, phakphi, phakphu,

phaphuk, phaphup, phapkha, phapkhi, phathak, phathik, phathit, phatpha, phikhak,

phikhuk, phikphu, phikthi, phiphak, phiphuk, phipkhi, phipphi, phithak, phithut,

phitkhu, phitphi, phukhap, phukhup, phukkhi, phupkhi, phuppha, phuthak, phuthap,

phuthup, phutphi, phutphu, phutthi, phutthu, thakhat, thakkhi, thakkhu, thakphi,

thakphu, thakthi, thakthu, thaphik, thaphup, thapkhu, thapthu, thathap, thathip, thathuk,

thathut, thatkha, thatkhu, thattha, thatthi, thikhuk, thikhut, thiphap, thiphip, thiphit,

thipkhi, thiptha, thipthi, thithik, thithut, thitkhi, thitthu, thukhat, thukhut, thukthi,

thukthu, thuphut, thuppha, thuthit, thutkhi
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A.3 Optionality

tabil, tab, paril, tapil, tap, radil, labil, lab

A.4 Alternations

daag, daakt, katav, kataft, rakad, rakadet, takaf, takaft



Appendix B

Results from segment-based

simulations

As mentioned in section 3.3, we have used a segment-based encoding of the lex-

icon to test the learning of aspiration, but a feature-based encoding in all other

simulations. Here we present alternative results of the three remaining simula-

tions (ab-nese, French optionality, and Hebrew alternations) in which the segment-

based encoding is used instead. The setting for each simulation is identical to

the setting reported in chapter 3, except for the French optionality simulation,

in which the input data include five words instead of eight. Otherwise, the final

grammars reached are the same.
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B.1 ab-nese

(44) a. Initial grammar:

Ginitial =


LEX: bab, aabab, ab, baab, babaaa, babababaa . . .

CON: FAITH

Description length: |Ginitial|+|D|Ginitial| = 4, 628+201, 600 = 206, 228

b. Final grammar:

Gfinal =


LEX: bb, aabb, ab, baab, bbaaa, bbbbaa, . . .

CON: MAX([+cons])� ∗[+cons][+cons]� FAITH

Description length: |Gfinal|+|D|Gfinal| = 4, 034+201, 600 = 205, 634

B.2 Optionality

(45) a. Initial grammar:

Ginitial =


LEX: tab, tabil, tap, tapil, paril

CON: FAITH � DEP([−high])� MAX([−liquid])� ∗[+cons][+cons]

Description length: |Ginitial|+ |D|Ginitial| = 208 + 275 = 583
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b. Final grammar:

Gfinal =


LEX: tabl, tapl, paril

CON: ∗[+cons][+cons]� FAITH � DEP([−high])� MAX([−liquid])

Description length: |Gfinal|+ |D|Gfinal| = 178 + 350 = 528

B.3 Alternations

(46) a. Initial grammar:

Ginitial =



LEX: katav, daag, rakad, takaf, kataft, daakt, rakadet,

takaft; Suffixes:{}

CON: FAITH � MAX([+cons])� DEP([−ATR])� IDENT([−voice])�

� IDENT([+cons])� IDENT([+labial])� IDENT([−labial])�

� IDENT([−high])� IDENT([+high])� ∗[−coronal][+ATR]�

� ∗[+coronal][+coronal]� ∗

 +cons

+voice

 [−voice]

Description length: |Ginitial|+ |D|Ginitial| = 492 + 24 = 516
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b. Final grammar:

Gfinal =



LEX: katav{−t}, daag{−t}, rakad{−t}, takaf{−t}; Suffixes:{t}

CON: ∗

 +cons

+voice

 [−voice]� ∗[−coronal][+ATR]�

� ∗[+coronal][+coronal]� IDENT([−high])� IDENT([−voice])�

DEP([−ATR])� FAITH � IDENT([+labial])� MAX([+cons])�

IDENT([−labial])� IDENT([+cons])� IDENT([+high])

Description length: |Gfinal|+ |D|Gfinal| = 376 + 16 = 392
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