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Abstract 

 

 

This dissertation is concerned with inferences which are traditionally attributed to 

Grice’s first maxim of Quantity (in particular, scalar and clausal implicatures), like 

the inference from (1) to (2), (3) and (4), and from (5) to (6). 

 

(1) Mary has a snake or an iguana 

(2) Mary doesn’t have a snake and an iguana  

(3) As far as the speaker knows, it is possible that Mary has a snake, and it 

 is possible that Mary doesn’t have a snake. 

(4) As far as the speaker knows, it is possible that Mary has an iguana, and 

it is possible that Mary doesn’t have an iguana. 

 

(5) A: Do you have any juice? 

B: I have orange and grapefruit 

(6) B doesn’t have apple/pear/peach/etc. juice 

 

I start out by arguing that the original Gricean approach to ‘Quantity’ implicatures has 

some serious problems. The Gricean maxim derives only weak implicatures of the 

form ‘the speaker doesn’t know that ϕ’. The strengthening of these to implicatures of 

the form ‘the speaker knows that not ϕ’ involves an extra premise which in some 

cases amounts to being the strong implicature itself. Moreover, I show that the 

derivation mechanism wildly overgenerates non existent implicatures.   

 vi



 

The Gricean theory has been modified, in particular in the work of Larry Horn, by 

restricting the application of Grice’s first maxim of Quantity to contextually given 

ordering scales. I discuss a variety of problems for approaches like Horn’s, in 

particular: the stipulative nature of the contents of the scales, various problems of 

overgeneration, and the problem of embedded implicatures. 

 

I then develop an alternative to the Gricean theory of these implicatures. My starting 

point is the exhaustivity operator, exh, stipulated by Groenendijk and Stokhof within 

their theory of questions. I show that this operator already accounts for some of the 

‘Quantity’ implicatures, without having the problems of the Gricean theories. Exh is 

supposed to have the meaning of only, but the semantics Groenendijk and Stokhof 

suggest for it is not sophisticated enough. I show some problems it runs into, and  

replace their semantics of exh with a new one that succeeds in the cases where theirs 

fails. I then show that my semantics for exh naturally generalizes to domains that 

Groenendijk and Stokhof did not cover.  

 

The operation exh forms the heart of my alternative to the Gricean theory. I suggest to 

replace the Gricean theory of Quantity implicatures with a theory which consists of an 

exhaustivity operator, exh,  that strengthens the meaning of a statement relative to a 

question, and a strong maxim of Quality for questions: “Answer the question!” I 

assume that answering a question means giving a (true and complete) semantic 

answer to it, and that exh is generally available, and can be used as a strategy to 

satisfy the strong Quality maxim for questions. This is how the effects of implicatures 

come in. 

 vii



 

I show that whatever we need of the Horn scales comes out naturally from the 

semantics of the exhaustivity operator (it imposes a semilattice structure on the 

domain it operates on). Thus, the right kind of Horn scales, where needed, follow 

from the present theory. 

 

I show that the resulting theory provides a satisfactory alternative account of scalar 

and clausal implicatures, and moreover, I show that the facts about implicature 

inheritance and cancellation in logically complex sentences (“the projection problem 

for implicatures”) come out naturally within the framework suggested here. 
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Chapter 1 

Problems for Gricean Pragmatics  

 

 

1.1 Conversational implicatures 

 

The idea that meaning (in the pre-theoretical, non-technical use of the word) is not 

homogenous; i.e. that it can be divided into different ‘layers’, and that it involves the 

integration between different systems of rules, principles, constraints or otherwise, 

turned out to be very useful in the formulation and delineation of meaning theories, 

and it has a long history. Frege (1892) distinguishes the ‘sense’ of a sentence (the 

‘thought’ expressed by it) from three other components of interpretation: 

presuppositions, varieties of interpretation which don’t contribute to the sense of a 

sentence, but ‘only illuminate it in a peculiar fashion’ (such as the contrastive 

contribution of although and but, according to him), and ‘subsidiary thoughts’. An 

example of the latter is the causal implication of  (1).  

 

(1) Napoleon, who recognized the danger to his right flank, himself led his guards 

against the enemy position.   

 

According to Frege, sentence (1) expresses two thoughts, the thought that Napoleon 

recognized the danger to his right flanks, and the thought that Napoleon himself led 

his guards against the enemy position. The implication that the knowledge of the 

danger was the reason why Napoleon led the guards against the enemy, is probably 
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not ‘really expressed’, but only ‘merely suggested’, because the sentence is probably 

true also in cases where there is no causal connection between the two parts of 

sentence (1).1

 

 Grice (1975) suggests the following more elaborated distinction (adapted from Horn 

1988):  

 

 what is meant 

 

 

what is said   what is implicated  

 

   conventionally  non-conventionally 

 

     conversationally non-conversationally  

 

   generalized    particularized 

  conversational implicatures conversational implicatures  

 

It is not my intention to argue in favor or against this elaborate picture. I’m concerned 

with various types of inferences, which, since Grice, were put together under the 

rubric “conversational implicatures” (either generalized or particularized). Let me first 

introduce (at this stage, informally) three types of inference: implication, entailment 

and implicature. Following Chierchia and McConnell-Ginet (2000), and Kadmon 
                                                 

1 Potts 2005 treats the contribution of nonrestrictive relative clauses like that in (1) as an instance of 
conventional implicature, although he does not discuss the implication of the relation between the 
proposition expressed by the relative clause and that expressed by the main clause. 
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(2001) I’ll use the terms ‘imply’ and ‘implication’ very generally; “A implies B” 

means that A (or the utterance of A) gives some reason to conclude B. The terms 

‘entailment’ and ‘entail’ will be reserved for a semantic relation; A entails B iff the 

information that B conveys is contained in the information that A conveys. I’ll use the 

terms ‘implicature’ and ‘implicate’ for any implication which is not an entailment 

(more precise definitions and distinctions will be formulated later on). For example, 

while (2) implies both (3) and (4), it entails (3), and implicates (4).   

 

(2) Not everyone danced. 

(3) Someone didn’t dance. 

(4) Someone danced. 

 

(2) does not entail (4), because (2) is compatible with a situation in which no one 

danced; nevertheless it strongly suggests (4).  

 

It is not always easy to determine whether some implication is an entailment or an 

implicature. Consider (5): 

 

(5) Maria and Alberto are married. 

(6) Maria is married, and Alberto is married. 

(7) Maria and Alberto are married to each other. 

 

In many contexts we understand (5) as conveying (7), while in some contexts we 

understand it as conveying (6). One possibility is to assume that (5)’s meaning is 

equivalent to (6), and that it merely implicates (7). Another possibility is to assume 
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that (5) is ambiguous between a collective and a distributive interpretations of marry. 

Under this assumption, (7) is an entailment of one of (5)’s readings (the reading where 

marry is a collective predicate), while (6) is entailed by both readings. Choosing 

between these two options is not a trivial matter. Adherents of the implicature theory 

would have to come up with a convincing and general method for deriving (7) as an 

implicature of (5), while adherents of the ambiguity theory would need to come up 

with convincing arguments for their view.    

 

Grice (1975) suggests a framework for explaining how certain implicatures may be 

derived. He reserves the term ‘conversational implicature’ for a type of inference 

which is defeasible (can be cancelled without contradiction) and which can be derived 

from the interaction of the utterance’s truth conditions (in its context of utterance), 

contextual assumptions, and principles that guide exchange of information in 

conversation. These principles are stated in his Cooperative Principle and its four 

maxims of conversation (Grice mentions the possibility of the existence of other 

maxims as well).  

 

The Cooperative Principle: 

Make your contribution such as is required, at the stage at which it occurs, by the 

accepted purpose or direction of the talk exchange in which you are engaged. (Grice 

1975: 45) 

The Maxims of Quantity: 

1. Make your contribution as informative as is required (for the current purposes 

of the exchange). 
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2. Do not make your contribution more informative than is required. (Grice 

1975: 45) 

The Maxim of Quality: 

Try to make your contribution one that is true.  

1. Do not say what you believe to be false. 

2. Do not say that for which you lack evidence. (Grice 1975: 46) 

The Maxim of Relation: 

Be Relevant. (Grice 1975: 46) 

The Maxim of Manner: 

Be perspicuous.  

1. Avoid obscurity of expression. 

2. Avoid ambiguity. 

3. Be brief (avoid unnecessary prolixity). 

4. Be orderly (Grice 1975: 46) 

 

Grice suggests that the derivation of conversational implicatures is as follows: 

 

“A man who, by (in, when) saying (or making as if to say) that p has implicated that 

q, may be said to have conversationally implicated that q, PROVIDED THAT (1) he 

is to be presumed to be observing the conversational maxims, or at least the 

cooperative principle; (2) the supposition that he is aware that, or thinks that, q is 

required in order to make his saying or making as if to say p (or doing so in THOSE 

terms) consistent with this presumption; and (3) the speaker thinks (and would expect 

the hearer to think that the speaker thinks) that it is within the competence of the 
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hearer to work out, or grasp intuitively, that the supposition mentioned in (2) is 

required.” (Grice 1975: 49-50) 

 

Let me quote one of Grice’s examples to illustrate his point (the title and the comment 

in square brackets are mine). I chose this particular example, because it involves the 

first maxim of Quantity, which will be my main interest in this thesis. Implicatures 

that involve this maxim will be called ‘Quantity implicatures’. 

 

A holiday in France (Grice 1975, 51-52) 

A is planning with B an itinerary for a holiday in France. Both know that A wants to 

see his friend C, if to do so would not involve too great a prolongation of his journey: 

 

A: Where does C live? 

B: Somewhere in the south of France. 

 

(Gloss: There is no reason to suppose that B is opting out [from the Cooperative 

Principle]; his answer is, as he well knows, less informative than is required to meet 

A’s needs. This infringement of the first maxim of Quantity can be explained only by 

the supposition that B is aware that to be more informative would be to say something 

that infringed the maxim of Quality, ‘Don’t say what you lack adequate evidence for’, 

so B implicates that he does not know in which town C lives.) 
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1.2 Gamut on Quantity implicatures 

 

Gamut (1991) try to explicate the pattern of reasoning exemplified by the example 

just quoted in more detail. According to Gamut, a conversational implicature of a 

sentence A is a logical consequence of the conditions under which A can be correctly 

used. Something like the Gricean maxims play a role in determining these conditions.   

 

A speaker S makes correct use of a sentence A in order to make a statement before a 

listener L just in case: 

(i) S knows that A is true; 

(ii) S knows that L does not know that A is true.  

(iii) S knows that A is relevant to the subject of the conversation; 

(iv) For all sentences B of which A is a logical consequence (and which are not 

equivalent to A), (i)-(iii) do not all hold with respect to B. (Gamut 1991, 

205) 

 

In (i)-(iii) above, Gamut actually use believe, not know. They point out explicitly that 

by believe they mean strict belief: “Not only must the speaker think it more probable 

that A holds than that A does not hold, he must also be quite convinced that A is 

indeed true” (Gamut, 205). As the meaning of the natural language verb believe, in 

my opinion, expresses a much weaker notion, I will not use it in this context. I chose 

know instead, for the following reason. I gather that the sentences A which Gamut 

consider here are not about the information or the beliefs of the speaker (for example, 

they are not of the form I know that… or I believe that…).  If A were such a sentence, 

the clauses (i) - (iii) above would have to change to accommodate for this fact.  When 
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S utters a sentence A which is not explicitly about her beliefs, L will normally assume 

that  A follows from S’s information. A response such as How do you know that A? to 

the utterance of A, is more natural than a response such as Why do you believe that A? 

The notion needed here is something like: “The context and conversation so far have 

put S in a position that she can be reasonably regarded as having to accept that A is 

true”. Since this is by far too complex a notion to repeat more than once, and since I 

believe that the natural language verb know is sometimes (mis)used to express such a 

notion, I will (mis)use the word know to stand for this relation. Thus where I use 

know, it is without entailing that A is actually true. 

  

We see that Gamut interpret informativeness in terms of asymmetrical entailment (B 

entails A, and it is not equivalent to A). This characterization needs some refinements, 

and this point will become clear in the example discussed below, but I leave a detailed 

discussion for a later stage. Let me reanalyze Grice’s ‘holiday’ example in Gamut’s 

terms.  

 

(8) C lives somewhere in the south of France 

 

A= C lives somewhere in the south of France. 

B = C lives in Nice.  

 

For simplicity let us assume that B entails A (B does not strictly entail A, A is entailed 

by B plus the information that Nice is in the south of France. Let us assume that both 

S and L have this information, and that they know that the other has it as well). 
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S makes a correct use of ‘C lives somewhere in the south of France’ before L just in 

case: 

(i) S knows that C lives in the south of France; 

(ii) S knows that the information that C lives in the south of France would be 

new to L; 

(iii) S knows that the fact that C lives in the south of France would be relevant 

to the subject of the conversation; 

(iv) Either: (a) S does not know that C lives in Nice; or 

                        (b) S does not know that the information that C lives in Nice would 

                              be new to L; or 

                        (c) S does not know that the fact that C lives in Nice would be 

                             relevant to the subject of the conversation. 

 

Concerning the possibilities in (iv), we can rule out (c), because the information that 

C lives in Nice would be relevant here. (b) must also be ruled out; if S knows that the 

information that C lives in the south of France is new to L (premise ii), so must be the 

information that C lives in Nice (this is true under the assumption that both S and L 

know that Nice is in the south of France, and that S knows that L knows this). So, we 

must conclude that (a) is true; i.e. S doesn’t know that C lives in Nice. This line of 

argumentation works for any town, X, hence for every X, S does not know that C 

lives in X; i.e. S does not know in which town C lives. 

 

Note also that in contexts where (c) is true (S does not believe/know that the fact that 

C lives in Nice would be relevant to the subject of the conversation), the theory 
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`predicts that there is no implicature that S doesn’t know in which town C lives. This 

seems right: 

 

(9) L is planning a high school reunion, but he’ll invite only those old class mates 

who are not living presently abroad.  

L: Where does C live? 

S: Somewhere in the South of France. 

 

In (9), S’s utterance does not implicate that S doesn’t know in which town C lives. In 

this case the information that C lives abroad (which is entailed from S’s utterance in 

the context given) is already sufficient for the purpose of L.  

 

 

1.3 Problems with Gamut’s theory 

 

1.3.1 Strong vs. weak Quantity implicatures  

 

Let us check whether Gamut’s proposal can derive (11) as a conversational 

implicature of (10). That is, we assume that (10) actually intuitively does implicate 

(11), and we check whether Gamut predict this. 

  

(10) Mary has a cat or a dog. 

(11) Mary doesn’t have a cat and a dog. 

 

It is easy to see that an implicature that Gamut can derive for (10) is (12): 
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(12) S doesn’t know that Mary has a cat and a dog. 

 

Obviously, this is too weak. Note, however, that (11) does follow from (12’) below, 

under the assumption that S’s information is true. 

 

(12’) S knows that Mary doesn’t have a cat and a dog 

 

It is widely assumed in the literature about Quantity implicatures (see, for example, 

Gazdar 1979 and Levinson 1983) that the Quantity implicatures of a proposition ψ, 

are epistemically modified, and it is observed that Grice’s maxim of Quantity 

sometimes licences strong inferences of the form ‘S knows that not φ’, and sometimes 

only weak inferences of the form ‘S doesn’t know that φ’, where φ is a stronger 

alternative to ψ. In this, the literature follows the discussion of this phenomenon in 

Horn (1972). Levinson (1983) states that this fact remains one of the many mysteries 

in the area. Note that Gamut derives only weak inferences such as (12), but if we 

could motivate a contextual strengthening of (12) to (12’), we would have a plausible 

way to explain the inference from (10) to (12’) and to (11) as a conversational 

implicature. (12), of course does not entail (12’), because (12’) is also true if (13) is 

true.  

 

(13) S knows that Mary has a cat or a dog, but doesn’t know whether she 

 has both. 

 

In order to rule out this option, we must add the following additional premise: 
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(14) S knows whether Mary has a cat and a dog.  

 

Is this additional premise plausible?  This premise means one of the following two: 

 

i) S knows that Mary has a cat and a dog 

ii) S knows that Mary doesn’t have a cat and a dog. 

 

But case (i) contradicts (12), the weak implicature derived by Gamut. If (i) were true, 

S should have said: Mary has a cat and a dog, and not the weaker statement (10). 

Thus, case (i) is ruled out, because uttering (10) in a context where (i) is true, is not 

correct according to Gamut. This means that the additional premise reduces to (ii). 

But this, of course, is the strong implicature (12’). This means that Gamut can only 

derive the strong implicature in contexts where the strong implicature is already 

assumed. Hence, it means that Gamut cannot derive the strong implicature.  

 

 

1.3.2 The need to constrain the derivation process 

 

A closer look at Gamut’s Gricean theory shows that even if the problem of deriving 

strong implicatures is solved somehow, the theory still has a very serious problem. It 

would derive non-existent and even contradictory implicatures. In the same way that 

the theory is meant to predict that (10) conversationally implicates (11), it would also 

make the wrong (and incompatible) prediction that it implicates (15). 

 

(15) S knows that Mary has a cat and a dog. 
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Let us see why.  

 

Since (A and B) asymmetrically entails (A or B), we get the implicature: S doesn’t 

know that (A and B), and this should somehow strengthen to S knows that not (A and 

B). But the same procedure should apply to other entailments as well. Consider 

exclusive or. Clearly, (A or B) and [not (A and B)] entails (A or B). So Gamut get the 

implicature (a): S doesn’t know that {(A or B) and [not (A and B)]}. This should 

strengthen to (b): S  knows that not {(A or B) and [not (A and B)]} which is equivalent 

to (c): S knows that {[not(A or B)] or (A and B)}. But by Quality, condition (i) in 

Gamut’s formulation, it holds that (d): S knows that (A or B). From (c) and (d) it 

follows that S knows that A and B. This is obviously wrong. The utterance of (A or B) 

doesn’t have the implicature S knows that A and B. 

 

Assuming there is a general strengthening procedure which applies to all weak 

implicatures, Gamut’s theory derives too many. A way to constrain the derivation 

process is needed, otherwise it is completely unclear when we can and when we 

cannot apply the strengthening procedure. 

 

 

1.4 Constraining informativeness by Horn-scales 

 

A solution to the problem discussed above may be found in Horn’s (1972) notion of a 

scalar implicature. Horn focuses on the type of implicatures that arise with sentences 

that contain some value on a quantitative scale. Horn modifies the Gricean theory by 
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introducing the concepts of a pragmatic scale and a scalar implicature. Horn defines 

the notion of a scalar implicature as follows: when a speaker utters a statement S 

which contains an element pi on a given quantitative scale p1, p2, …, pn (which orders 

the elements p1, p2, …, pn according to a relation of ‘is more informative than’), the 

hearer can infer that every statement S’, which is the result of substituting pi in S for a 

higher value in the same scale, is false, and she must infer that a statement S”, which 

is the result of substituting pi in S for the highest value in the same scale, is false. 

 

Let us apply Horn’s definition to example (10), which is repeated below. 

 

(10) Mary has a cat or a dog. 

 

Suppose that (10) is asserted, and suppose, with Horn, that or is an element on the 

following scale: or, and. Then, the hearer must infer (16). 

 

(16) It is not the case that Mary has a cat and a dog. 

(17) It is not the case that Mary has a cat or a dog, but not both. 

 

In order to block the inference in (17), we have to assume that while the pair <α or β, 

α and β> is a ‘legitimate’ quantitative scale, the pair <α or β, (α or β) and not (α and 

β)> is not. 

 

If the application of Grice’s first Quantity maxim can be restricted to ‘legitimate’ 

quantitative scales, we have solved our problem. But we are faced with a new one, 

namely, what forms a ‘legitimate’ quantitative scale? Can we define Horn scales? 
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We see that, contrary to Gamut (1991), who derive only weak Quantity implicatures, 

Horn (1972) derives only the strong ones. I would like to make it clear at this stage 

that I do not intend to replace Gamut’s theory with Horn’s. Gamut’s derivation 

process preserves Grice’s original insight that Quantity implicatures do not arise 

independently of ‘the purpose of the conversation’. Contrary to Horn, Gamut is 

capable of handling cases when the context doesn’t give rise to a scalar implicature. 

My intention is to check whether there is a way to modify Gamut’s theory with 

Horn’s scale insight in a way that will appropriately constrain it. 

 

Horn himself is aware of the role of context in building scales. See for example (18) 

and (19). 

 

(18) Arnie has 3 children, if not 4. 

(19) Arnie is capable of breaking 70 on this course, if not 65. 

 

Having 4 children entails having 3, while in a golf game, achieving a lower score 

entails that it is possible to achieve a higher one, so the scale of numbers is reversed. 

 

Here is a nice example that Horn (1989, p.241) cites from a review of The Soong 

Dynasty by Sterling Seagrave: “The picture of Chang Kai-Shek that emerges is one 

that rivals Mussolini, if not Hitler, as the very model of a modern dictator.” Horn 

comments that while there are no semantic criteria for putting proper names on a 

scale, this example suggests that there is one on which dictators are ranked, and that 

“the Führer clearly outranks (outgrosses?) il Duce on this scale”.  
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Quantitative scales may be based on a simple entailment relation (as in the case of 

numbers, where usually the higher number on the scale entails the lower number), or 

on more refined notions. If we want to explain the inference from (20) to (21) and 

from (22) to (23) (in the context of Grice’s original example) on the grounds that the 

speaker couldn’t be as informative as expected, we must come up with a more 

contextual notion of informativeness.  

 

(20) Some of my friends are Zoroastrians. 

(21) S knows that not all her friends are Zoroastrians. 

 

(22) C lives somewhere in the south of France. 

(23) S doesn’t know that C lives in Nice.  

 

How should we characterize the relation between some and all and between the south 

of France and Nice? Let me get more precise. For the terms ‘entailment’ and ‘entails’ 

I’ll use the standard definition from modal logic.  

  

(24) A sentence A (in a language L) entails a sentence B iff for every model M 

for L, for every world w in M, if A is true in w, then B is true in w (for 

every M and w, vAbM,w ⊆  vBbM,w).   

 

It is easy to see that the sentence C lives somewhere in the south of France does not 

entail the sentence C lives in Nice because there are worlds where Nice is not in the 

south of France. But, as mentioned before, the inference does hold if we restrict 
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ourselves to worlds, like the real world, where Nice is in the south of France. In order 

to define this context dependent notion of entailment, I’ll use Stalnaker’s  

(1974, 1975, 1978) notion of a ‘context set’. Stalnaker represents the common beliefs 

and assumptions of the participants in the conversation about the world as a set of 

possible worlds. This set contains the worlds compatible with what is assumed in the 

conversation. Each world in this set, which is called the context set, could be, as far as 

the speakers assume, the real world. The notion of entailment relevant to the first 

maxim of Quantity is entailment in a context set. 

 

(25) Sentence A (in a language L)entails sentence B in a speech context c, iff for 

every model M, for every world w in the context set C of c, if A is true in 

w, then B is true in w (for every M and w, vAbM,w ∩C ⊆  vBbM,w). 

 

Now we turn to the relation between All my friends are Zoroastrians and Some of my 

friends are Zoroastrians. The first sentence is compatible with S not having friends at 

all, the second is not, and hence the former does not entail the latter. However, the 

inference does go through in every context where the set of S’s friends is not empty. 

Moreover, using the first sentence in a context where it is known that S doesn’t have 

friends is bizarre. In normal cases, the context set will include only those worlds in 

which the set of S’s friends is not empty, or otherwise this information will be 

accommodated (in the sense of Lewis 1979).  

 

The two cases discussed are similar in that they are both instances of entailment in a 

context set. They differ as follows: It is quite normal for S to assert C lives in Nice 

even if she doesn’t know that Nice is in the south of France or expects L to know it. 
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However S would not normally assert All my friends are Zoroastrians if she knows 

she hasn’t got any friends, and she would normally expect L to accommodate this 

information, if she thinks L doesn’t assume it already.  

 

What we just did is give a contextual notion of inference which is more suitable than 

strict entailment for characterizing what it means for a sentence to be more 

informative than another. However, the problem of constraining the applicability of 

this notion, so that it won’t give rise to non-existing and contradictory implicatures, 

still remains. What should be the restriction on Horn-scales, so, that, for example, <α 

or β, α and β> will be a legitimate scale but not <α or β, (α or β) and not (α and β)>? 

 

There are many attempts in the literature to constrain the notion of a Horn-scale. 

While Gazdar (1979, p.58) assumes that “the scales are, in some sense, ‘given to us’”,  

Hirschberg (1985) proposes to substitute ‘scale’ with any partial ordering relation 

which is mutually believed salient by the speaker and the listener. The problem is that 

I don’t see why the relation between or and and should be always more salient than 

the relation between or and or but not and (i.e. exclusive disjunction).  

 

Atlas and Levinson (1981) require that items on the scale should be from the same 

semantic field, lexicalized to the same degree, and have the same brevity. Matsumoto 

(1995) shows that this is wrong. First, items on a Horn scale need not be from the 

same semantic filed.  

 

(26) A: What have you done with that mail? 

B: I’ve typed it 
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Implicature: B has not mailed it yet. 

 

Matsumoto argues that it is not clear that a set of words like type and mail can be 

regarded as forming a semantic field. He points out that members of the same 

semantic field are often all relevant to the discourse in which one of them is used, but 

the real condition here is of relevance and not of forming a semantic field. 

 

Second, there is no brevity/lexicalization condition on Horn scales. As (27) shows, an 

implicature on the basis of the scale <warm, a little bit more than warm> is possible.  

 

(27) It was warm yesterday, and it is a little bit more than warm today. 

Implicature: The speaker believes that it was not “a little bit more  

than warm” yesterday. 

 

Another case that shows that brevity will not constrain Horn scales properly is the 

following: Mary, as an answer to the question Who is writing a PhD in linguistics?, 

implicates (if a full answer is expected),  that John is not writing a PhD in linguistics, 

and it can’t implicate that he is. This suggests that while <Mary, Mary and John> can 

function as Horn-scale in the right context, <Mary, only Mary> can’t. But obviously, 

only Mary is shorter than Mary and John. 

  

Matsumoto argues that a solution may be found in Horn’s (1989) claim that 

‘positively scalar’ and ‘negatively scalar’ elements cannot be put on the same scale. 

Horn excludes the possibility of some and not all or possible and unlikely to be on the 

same scale. According to Horn, the notions of ‘positively scalar’ and ‘negatively 
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scalar’ are parallel to the semantic notions of upward and downward monotonicity, 

which play a crucial rule in the distribution of negative polarity items (see Ladusaw 

1979). Matsumoto interprets Horn’s condition as requiring that all elements in a Horn-

scale should be either upward monotone or downward monotone.   

 

Before giving the formal definitions of upward and downward monotonicity for the 

general case, let me explain these notions for a simple case. 

 

(28) Let O be a function from propositions to propositions,  

O is upward monotone iff for every two propositions ϕ, ψ such that ϕ 

entails ψ, O(ϕ) entails O(ψ).  

O is downward monotone iff for every two propositions ϕ, ψ such that ϕ 

entails ψ, O(ψ) entails O(ϕ).  

 

It is easy to see that it is possible that is upward monotone, while it is unlikely that is 

downward monotone. Given that Mary is running entails Mary is moving, it is 

possible that Mary is running entails it is possible that Mary is moving, and it is 

unlikely that Mary is moving entails it is unlikely that Mary is running. If we want to 

generalize this notion to other kinds of functions, we must first define entailment also 

among entities other than propositions.  

 

In defining entailment and monotonicity, I use a logical language used in Kratzer 

(1991) and Kadmon (2001) which is based on Cresswell (1973). The syntax of the 

language is very similar to extensional type logic, the crucial semantic difference 

being that expressions of type t, i.e., formulas, do not denote truth values,  but sets of 
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possible worlds. Note that in this language the type of one place predicates, <e,t>, is a 

function from individuals to sets of possible worlds. 

 

I chose this language, because it is easier to define and demonstrate the notion of 

entailment between expressions other than propositions using it. This notion, of 

course, is translatable to more standard languages such as intensional type logic (IL) 

and two sorted type logic (TY2) which I’ll use in the next chapters of this dissertation. 

Definitions of generalized entailment can be found in Ladusaw (1979) and 

Groenendijk and Stokhof (1989) (without entailment defined at type e).  

 

(29) Let e be the type of individuals, and t be the type of propositions (sets of 

possible worlds). 

(i) For denotations of type e, entailment is the part-of relation between 

plural individuals or mass entities.

(ii) For denotations of type t,  entailment is the subset relation. 

(iii) If α and β are denotations of any type <a,b>, such that entailment is 

defined between denotations of type b, then α entails β iff for every 

denotation, γ, of type a, α(γ) entails β(γ).   

 

(30) Let f be a function of type <a,b>: 

f is upward monotone iff for every α, β∈a, if α entails β, then f(α) entails 

f(β) 

f is downward monotone iff for every α, β∈a, if α entails β, then f(β) 

entails f(α) 
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I’ll show that the functions from type <t, <t,t>> that are the denotations of and and or 

are upward monotone, and that the function from type <t,<t,t>> expressible by or but 

not and is not upward monotone. And is the intersection relation between sets of 

possible worlds, or is the union relation. 

 

Let ϕ, ψ be propositions such that ϕ entails ψ. We need to check whether andϕ entails 

andψ. According to (29iii), this amounts to checking whether andϕ(χ) entails andψ(χ)  

For every proposition χ. This is indeed the case, as shown in diagram A. 

The intersection between ψ and χ is a subset of the intersection between ϕ and χ. 

 

 

 

        A 

 

As shown in diagram B,  or is also upward monotone. The union of ψ and χ is a 

subset of the union of ϕ and χ. 
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                                                                    B                                    

 

Exclusive or is not upward monotone, as shown in diagram C, the union of ψ and χ 

minus their intersection, is not a subset of the union of ϕ and χ minus their 

intersection. 

 

                                                                    C 

 

I’ll show that the functions from type <<e,t>, t> denoted by John and John and Mary 

are both upward monotone, whereas the function from type <<e,t>,t> denoted by only 

John is not.  

vJohnb =  λP.P(j) 

vJohn and Maryb =  λP.P(j) ∧ P(m) 
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vonly Johnb =  λP.P(j) ∧ ¬∃x[x≠j ∧P(x)] 

Let P and Q be two expressions from type <e,t> such that P entails Q. We need to 

check whether vJohnb(P) entails vJohnb(Q); i.e. that P(j) entails Q(j). This is indeed so, 

because P entails Q, and according to definition (29iii) that means that for every 

individual k, P(k) entails Q(k).  

 

Let P and Q be two expressions from type <e,t> such that P entails Q. We need to 

check whether vJohn and Maryb(P) entails vJohn and Maryb(Q); i.e. that P(j) ∧ P(m) 

entails Q(j)  ∧ Q(m). This is indeed so, because P(k) entails Q(k), for every k, hence 

the intersection of P(j) and P(m) is a subset of the intersection of Q(j) and Q(m).  

 

Let P and Q be two expressions from type <e,t> such that P entails Q. We need to 

check whether vonly Johnb(P) entails vonly Johnb(Q). This is not the case. Let P be run 

and let Q be move. If only John runs, he needn’t be the only one who moves.  

  

I will show that the function denoted by some is upward monotone, and that the 

functions denoted by all is downward monotone. These functions are of type <<e,t>, 

<<e,t>, t>>. 

 

Let P and R be two expressions from type <e,t>, such that P entails R.  We need to 

check whether vsomeb(P) entails vsomeb(R). By definition (29iii), we need to check 

whether vsome(P)b(Q) entails vsome(R)b(Q) for every expression Q from type <e,t>. 

This is indeed so. In the set of worlds where some P is Q, that P is also R, because all 

P’s are R’s.  
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Let P and R be two expressions from type <e,t> such that P entails R. We need to 

check whether vallb(R) entails vallb(P). By definition (29iii), we need to check whether 

vall(R)b(Q) entails vall(P)b(Q) for every expression Q from type <e,t>. This is indeed 

so. In the set of worlds where all R’s are Q’s all P’s are Q’s as well because all P’s are 

R’s.     

 

I’ll leave it to the reader to check that the functions from type <<e,t>, t> denoted by 

Some semanticists and All semanticists are both upward monotone, whereas the 

function from type <<e,t>,t> denoted by No semanticists is downward monotone.  

 

We must assume that the functions of type <e,t> denoted by run and run quickly are 

both upward monotone. Here’s why. Let δ and ε two individuals such that ε v δ (for 

example, δ= John and Mary and ε = Mary). Our intuitions about entailment suggest 

that for any δ entailing ε, if vrunb(δ)= 1, then vrunb(ε)= 1. The same goes for run 

quickly. This follows from our intuitions that run and run quickly are distributive 

predicates. 

 

Now we are in a position to define a Horn-scale, and see how this definition 

constrains the derivation of Quantity implicatures.  

 

(31) Let p1, p2, …pn be denotations of the same type. <p1, p2,…pn> is a Horn-

scale in a speech context c, if the following two conditions hold: 

i. For every i, i>0, pi+1 entails pi in c, and pi does not entail pi+1 in c.  

ii. p1,p2,…pn are all upward monotone or p1,p2,…pn are all downward  

            monotone. 
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Concerning the cases we checked before, <vsomeb, vallb>, <vorb, vor but not andb> and 

<vJohnb, vonly Johnb> are not Horn-scales in any context, whereas <vorb, vandb>, 

<vrunb, vrun quicklyb> and <vJohnb, vJohn and Maryb> are Horn-scales in every 

context, and <vsome semanticistsb, vall semanticistsb> is a Horn-scale in a context 

where there are semanticists.  

 

We already saw that implicatures based on or, and and on John, John and Mary are 

possible, while implicatures based on or, or but not and and on John, only John are 

impossible. We also saw implicatures based on all and some, and they can be 

explained now on the basis that <vall X’sb, vsome X’sb> is a Horn-scale in a context 

where X is not empty. Do we get implicatures based on predicted scales like <vrunb, 

vrun quicklyb> or <vrunb, vrun slowlyb>? Out of the blue, sentence (32) does not 

implicate (33). 

 

(32) Mary ran.  

(33) Mary didn’t run quickly/slowly. 

 

However, it seems that in a context were we contrast the runners with the quick or 

slow runners, such implicatures do exist. 

 

(34) Mary, John and Bill ran. John ran quickly, Bill ran slowly. 
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L can infer that S knows that Mary didn’t run quickly, and that she didn’t run slowly, 

or at least that S doesn’t know that she ran quickly, and that S doesn’t know that she 

ran slowly. If we are to explain these inferences as Quantity implicatures, we need to 

come up with an explanation why the scales <vrunb, vrun quicklyb> or <vrunb, vrun 

slowlyb> are invoked only in few contexts, while the scales <vorb, vandb> or <vsome 

semanticistsb, vall semanticistsb> are invoked out of the blue.  

 

Reformulating Gamut’s Gricean theory, so it would reflect Horn’s (1989) and 

Matsumoto’s (1995) monotonicity requirement, means, informally, that the process 

should consider not all sentences that are entailed by and not equivalent to S’s 

utterance (as in Gamut’s original formulation), but only those which denote a 

proposition that is obtained from S’s original utterance by substituting some element 

for a higher element on the same Horn-scale. Thus, in deriving Quantity implicatures 

we cannot just refer to propositions, as in Gamut’s original theory, but need to access 

the parts of the proposition and its semantic composition. Here’s an attempt to give a 

more precise formulation of the process.  

 

(35) The Gamut-Horn-Matsumoto Theory:  

 

1. A conversational implicature of a sentence A is a logical consequence of the 

conditions under which A can be correctly used.  

2. A speaker S makes correct use of a sentence A=(α1(…(αi-1(αi(αi+1(…(αn)…) in 

order to make a statement before a listener L just in case: 

i. S knows that A is true; 

ii. S knows that L does not know that A is true.  
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iii. S knows that A is relevant to the subject of the conversation; 

iv. For all propositions B which differ from the proposition denoted by  

A as follows: B=(vα1b (…(vαi-1b (vβb (vαi+1b (…(vαnb)…), where     

< vαib, vβb > is a Horn scale in the context c, (i)-(iii) do not all hold 

with respect to B. 

 

Before discussing some problems with this, I’ll demonstrate how it works in two 

cases. 

 

 

1.5 Two detailed examples: Quantity implicatures in conditionals and  

      disjunctions 

 

I will show now what implicatures the Gamut-Horn-Matsumoto process predicts for 

conditionals and disjunctions. For the sake of the illustration, I assume that the 

alternatives which the process considers are built only on the basis of the functions 

denoted by if…then and or. 

 

 

1.5.1 Conditionals 

 

For simplicity, let’s assume that the natural language conditional operator denotes the 

material implication, a function of type <t, <t,t>> with the following meaning: 

 

(36) λϕλψ(ϕ→ψ) ; vϕ→ψb  = (W- vϕb)∪ vψb  
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This function is downward monotone. Here’s why. Let ϕ, ψ be propositions such that 

ϕ entails ψ. We need to check whether →ψ entails →ϕ. According to (29iii), this 

amounts to checking whether →ψ(χ) entails →ϕ(χ), for every proposition χ. This is 

indeed the case, as shown in diagram D. The union of χ and the complement of ϕ is a 

subset of the union of χ and the complement of ψ. 

 

                                               D 

It is not very hard to see that out of the other fifteen possible denotations of type 

<t,<t,t>>, only the following seven entail the material implication λϕλψ(ϕ→ψ): 

 

(37) a. λϕλψ(ϕ∧¬ϕ) 

b. λϕλψ(ϕ∨ψ) 

c. λϕλψ(ψ) 

d. λϕλψ(ϕ↔ψ) 

e. λϕλψ(¬ϕ) 

f. λϕλψ(¬ϕ)∧(¬ψ) 

g. λϕλψ(ψ→ϕ) 
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Out of these seven functions, only five are downward monotone: functions a, c, e, f 

and g. So, the only propositions which are stronger than the conditional if ϕ, then ψ 

which our process should consider are: 

 

(38) a. The proposition expressed by any contradiction. 

b.  ψ 

c.  ¬ϕ 

d.  (¬ϕ)∧(¬ψ) 

e.  ψ→ϕ 

 

The contradiction is not informative in any context, hence I think we can ignore it. Let 

me start with the implicatures based on (38b) and (38c). Assuming a context in which 

S thinks that (38b) and (38c), are relevant and new to L, L would get the following 

implicatures of if ϕ, then ψ: 

 

(39) S doesn’t know that ψ. 

(40) S doesn’t know that not ϕ. 

 

Assuming there exists some general process of strengthening weak implicatures of the 

form S doesn’t know that p to strong implicatures of the form S knows that not p, we 

might expect (39) and (40) above to be strengthened to (41) and (42): 

 

(41) S knows that not ψ. 

(42) S knows that ϕ. 
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The strong implicatures are not derived in this case. Here’s why. From (41) and  S’s 

original utterance, if ϕ, then ψ , L would have to infer that S knows that not ϕ. But this 

would contradict (40). Similarly, from (42) and the utterance of  if ϕ, then ψ, L would 

have to infer that S knows that ψ. But this would contradict (39). 

 

Thus the Gamut-Horn-Matsumoto theory predicts the clausal implicatures of the 

conditional. (39) and (40), together with the fact that (41) and (42) are false mean that 

for all S knows it is possible that ϕ and it is possible that notϕ, and that it is possible 

that ψ, and it is possible that notψ. 

 

Now we turn to (38d) and (38e). The weak implicatures that can be derived on the 

basis of these propositions are (43) and (44) which follow already from (40) and (39) 

respectively, but it may be the case that (43) and (44) are strengthened to (45) and 

(46). Let us check this possibility. 

 

(43) S doesn’t know that not ϕ and not ψ 

(44) S doesn’t know that if ψ then ϕ 

(45) S knows that ϕ or ψ 

(46) S knows that if not ϕ then not ψ 

 

(43) cannot be strengthened to (45). Here’s why. From (45) and  S’s original 

utterance, if ϕ, then ψ , L would have to infer that S knows that ψ. But this would 

contradict (39). On the other hand, (45) can be strengthened to (46). This is called 

conditional perfection. From (46) and the utterance of  if ϕ, then ψ, L will infer that S 
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knows that ψ  iff ϕ. This inference does not contradict any of the weak implicatures, 

and it appears in many contexts, for example: 

 

(47) If you study, you’ll pass the exam 

(48) Imp: If you don’t study, you won’t pass the exam. 

 

Stipulating monotonicity, prevents L from inferring, for example, that S know that it is 

not true that ϕ  iff ψ, because the function that the material equivalence denotes, 

function (37d) above, although entailing the material implication, is not downward 

monotone. This prediction is good. The utterance of a conditional if ϕ then ψ does not 

normally implicate ψ (whether ϕ or not ϕ). 

 

This example was given mainly for the purpose of  demonstration. I don’t assume that 

the natural language conditional is actually the material implication. If conditionals 

are strict implications, (ϕ→ψ), the picture will essentially stay the same, but we will 

have to make certain decisions about the relation between the necessity operator , 

and the epistemic operator that we used in the implicature derivation process.  

 

 

1.5.2 Disjunctions 

 

What are our predictions concerning disjunctions? We saw earlier that the function 

denoted by sentential or is upward monotone. There are seven functions of type 

<t,<t,t>, that entail, but are not equivalent to, the denotation of or. Five of them are 

upward monotone: 
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(49) a. λϕλψ(ϕ∧¬ϕ) 

b. λϕλψ(ϕ) 

c. λϕλψ(ψ) 

d. λϕλψ(ϕ∧ψ) 

e. λϕλψ(ϕ)∧(¬ψ) 

 

So (ignoring the contradiction), the only propositions which are stronger than the 

disjunction ϕ or ψ which Gamut’s process should consider are: 

 

(50) a.  ϕ 

b.  ψ 

c.  ϕ∧ψ 

d.  (ϕ∧(¬ψ)) 

 

Let me start with (50a) and (50b). Assuming a context in which S thinks that (50a) 

and (50b) are relevant and new to L, L would get the following implicatures of ϕ or ψ: 

 

(51) S doesn’t know that ϕ. 

(52) S doesn’t know that ψ. 

 

Assuming there exists some general process of strengthening weak implicatures of the 

form S doesn’t know that p to strong implicatures of the form S knows that not p, we 

might  expect (51) and (52) above to be strengthened to (53) and (54): 
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(53) S knows that not ϕ. 

(54) S knows that not ψ. 

 

The strong implicatures are not derived in this case. Here’s why. From (53) and  S’s 

original utterance, ϕ orψ , L would have to infer that S knows that ψ. But this would 

contradict (52). Similarly, from (54) and the utterance of ϕ or ψ, L would have to 

infer that S knows that ϕ. But this would contradict (51). 

 

Thus the Gamut-Horn-Matsumoto theory predicts also the clausal implicatures of the 

disjunction. (51) and (52), together with the fact that (53) and (54) are false mean that 

for all S knows it is possible that ϕ and it is possible that notϕ, and that it is possible 

that ψ, and it is possible that notψ. 

 

Now we turn to (50c) and (50d). The weak implicatures that can be derived on the 

basis of these propositions are (55), which already follows from both (51) and (52), 

and (56) which already follows from (51), but it may be the case that (55) and (56) are 

strengthened to (57) and (58) respectively. Let us check this possibility. 

 

(55) S doesn’t know that ϕ and ψ 

(56) S doesn’t know that ϕ and not ψ 

(57) S knows that not (ϕ and ψ) 

(58) S knows that not ϕ or ψ 
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(56) cannot be strengthened to (58). Here’s why. From (58) and  S’s original 

utterance, ϕ or ψ , L would have to infer that S knows that ψ. But this would 

contradict (52). On the other hand, (55) can be strengthened to (57). From (57) and 

the utterance of  ϕ or ψ, L will infer that S knows that either ϕ or ψ but not both. This 

inference does not contradict any of the weak implicatures.  

 

Stipulating monotonicity, prevents L from inferring, for example, that S know that it 

is not true that ϕ  or ψ but not both, because the function that the exclusive 

disjunction denotes, as we saw earlier, although entailing the inclusive disjunction, is 

not upward monotone.  

 

So far then, we have seen two cases where the Gamut-Horn-Matsumoto theory works 

quite well. 

 

 

1.6 Problems with the Gamut-Horn-Matsumoto theory 

 

As mentioned earlier, introducing monotonicity into the definition of Horn scales 

means that, in the derivation process of a Quantity implicature of a proposition A, one 

must have access to its parts and their semantic composition (this follows from the 

definition of monotonicity). One problem immediately presents itself: How do we 

know which part or parts of the sentence we should use in the derivation of 

implicatures? When we derive the Quantity implicatures of a certain proposition A, do 

we need to check all possible Horn scales that can be built on the basis of all the 

constituents of A or do we need to restrict ourselves to only certain constituents? 
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Let us consider (59) and (60): 

 

(59) Three linguists are smart. 

(60) It is not the case that four linguists are smart. 

  

We can derive (60) as an implicature of (59) on the basis of the scale <three, four>, 

or, alternatively, on the basis of <three linguists, four linguists>. In addition, there is 

nothing to prevent us from using the scale <three linguists, three semanticists>, to 

derive (61) as an implicature of (59): 

 

(61) It is not the case that three semanticists are smart. 

 

But that is problematic. Suppose we are in a context where both the exact number of 

smart linguists and the exact number of smart semanticists is relevant. In such a 

context, when (59) is uttered without focus on linguists, it would normally implicate 

(60), but not (61). It seems then that in a given context, not all Horn scales associated 

with items in the sentence need be available for deriving an implicature. Our 

derivation mechanism is still not constrained enough.  

 

Let us consider now (62) and (63). 

 

(62) Some linguists are smart. 

(63) Not all linguists are smart. 

 

 36



As we saw in section 1.4, <some, all> is not a Horn scale, because some and all do not 

have the same monotonicity properties. In order to derive (63) as an implicature of 

(62), we have to use the scale <some linguists, all linguists>.  

 

Rooth (1992) points out that scalar implicatures depend on focus: 

 

(64) He is GOOD at math. 

Implicature: not wonderful at math 

(65) He is good at MATH 

Implicature: not good at other subjects 

 

If focus determines the element to be compared, i.e. if we only look at Horn scales 

which include the focal element as a member, this might pose a problem for our 

analysis of (62). Consider the following example: 

 

(66) SOME semanticists and ALL syntacticians have read at least one article by 

Chomsky.  

 

When (66) is pronounced with a pitch accent on some and all, it is plausible to assume 

that the contrastive focus here is on the determiners and not on the DPs. The sentence 

clearly implicates that not all semanticists read an article by Chomsky. It also seems 

that in deriving the implicature we use the contrast that is made in the sentence 

between some and all. This is a problem since our mechanism disallows the scale 

<some, all>.   
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When discussing Horn scales it was mentioned that these scales are not necessarily 

based on pure entailment. The notion of entailment in a context was introduced. 

However, there are cases in which the relevant ‘scale’ (or set of alternatives) is not 

based on ‘contextual entailments’, but purely on world knowledge. (67) is such a case. 

 

(67) A: What have you done with that mail? 

B: I’ve typed it 

Implicature: B has not mailed it yet. 

 

The implicature that B has not mailed the letter yet is possible also in contexts where 

mailing a letter does not ‘contextually entail’ typing it, for example, when 

handwriting is an option too.  

 

Another problem concerns the derivation of strong implicatures. Our process derives 

directly only weak implicatures. We already saw that in the case of the <or,and> scale 

it was impossible to derive the strong implicature from the weak implicature by 

simply adding an additional premise, hence some general strengthening principle must 

be stipulated. Unless a plausible pragmatic explanation for the strengthening process 

is found, there is no justification for relating the strong implicatures to the weak ones. 

It might as well be that the strong implicatures are derived completely separately from 

the weak implicatures. 

 

Our theory is arbitrary in yet another way. We have assumed with Horn and 

Matsumoto that the pragmatic concept of ‘informativeness’ should be restricted by the 

formal notion of ‘monotonicity’. And if we make that assumption, aren’t we loosing 
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the original Gricean communicative motivation? I cannot think of any language 

external explanation to why monotonicity should be involved at all in determining the 

conditions under which a speaker makes a ‘correct’ use of a sentence.  It seems to me 

that the attempt to fix the Gricean theory ended in voiding it from its original insight. 

If this is the case wouldn’t it be better for us to look for a solution somewhere else?  

 

In the next section I will present yet another problem for Gricean theories of Quantity 

implicatures. 

 

 

1.7 ‘The projection problem’ for Scalar implicatures  

  

1.7.1 ‘Embedded’ scalar implicatures 

 

Landman (2000) points out a serious problem with Horn’s account of scalar 

implicature. Horn’s theory cannot work for cases where the scalar element is in the 

scope of another operator. Instances of this problem have been discussed in the 

literature before (Gazdar 1979, Hirschberg 1985, Horn 1989). Gazdar (1979) in his 

formalization of the Grice/Horn theory suggests to simply restrict the derivation of 

scalar implicatures to ‘simple’ sentences. So, Gazdar explicitly doesn’t have a theory 

of implicatures in complex sentences. But, as Landman points out, such a theory is 

needed, because logically complex sentences can have implicatures. The problem is 

that Horn’s theory, applied as is to complex sentences makes wildly incorrect 

predictions. 
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Consider for example an utterance of (68) as an answer to the following question: For 

every x, how many children does x have? 

 

(68) Everyone has 3 children. 

 

Horn would derive (69) as a conversational implicature of (68). 

 

(69) S knows that [It is not the case that [everyone has 4 children]]. 

 

This is obviously the wrong implicature. (69) is equivalent to (70), which is too weak. 

The correct implicature should be (71): 

 

(70) S knows that someone does not have 4 children. 

(71) S knows that for every x, x does not have 4 children. 

 

Landman proposes that the ‘core’ of the scalar implicature, x does not have 4 

children, is derived at the earliest level in the grammatical derivation of the sentence 

asserted where an appropriate scale is available, and that the actual implicature of the 

sentence is built up, following its semantic composition. According to Landman, an 

implicature will inherit up, unless it contradicts the meaning of the sentence or is 

entailed by it.  So, interestingly, Landman suggests that scalar implicatures involving 

numerical scales are not derived by some Gricean process, but computed by the 

grammar. Actually, Landman’s problem shows also in clearly context dependent 

cases, as shown in (72).  
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(72) A: Did everyone order beer?  

B:  Some ordered orange juice.  

implicature: B knows that some did not order beer.  

 

What is the prediction of the Gamut-Horn-Matsumoto derivation process for (72)? 

Given that <order orange juice, order orange juice and beer> is a Horn-scale, the 

process can derive only the weak implicature that B does not know that some ordered 

orange juice and beer. Adding the assumption that B is not agnostic about the truth of 

Some ordered orange juice and beer, we get: 

 

(73) B knows that it is not the case that some ordered orange juice and beer. = 

            B knows that no one ordered orange juice and beer. 

 

This is wrong. The correct implicature should be (74): 

  

(74) B knows that the latter (i.e. the ones that he mentioned) did not order 

            orange juice and beer. 

 

We have two problems here. The first is with the scope of negation, and the second, 

with the anaphoric reference of the implicature to the meaning. A detailed discussion 

of ‘embedded’ implicatures is given in chapter 5, section 1.  
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1.7.2 Suspension and cancellation of scalar implicatures 

 

Levinson (1983, 2000) claims that scalar implicatures have a projection behavior that 

sometimes parallels the familiar behavior of presuppositions. (75)’s implicature that 

John doesn’t have more than 3 children,‘survives’ in (76) and ‘disappears’ in (77) -

(79). 

 

(75) John has three children.  

(76) It is possible that John has three children. 

(77) John has three, if not four children. 

(78) John has three or four children. 

(79) John doesn’t have three children. 

 

Compare this data with the behavior of the presupposition of stop:  

 

(80) John stopped smoking. (presupposes: John smoked) 

(81) It is possible that John stopped smoking.  

(82) John stopped smoking, if indeed he smoked. 

(83) John stopped smoking, or he didn’t smoke. 

(84) John didn’t stop smoking. 

 

(80)’s presupposition ‘survives’ in (81) and (84), and ‘disappears’ in (82)-(83).  

Levinson (2000) invites researchers working in dynamic semantics to pursue this 

parallelism, and find an independent explanation for the alleged failure of 
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implicatures under negation (Horn 1989 claims that scalar implicatures do not occur 

under downward entailing operators in general).  

 

Kadmon (2001) argues that there is no real parallelism between the projection of    

non-presuppositional implicatures (such as scalar implicatures) and the ‘projection’ of 

presuppositions. The most promising theories of  presupposition projection explain 

their projection behavior from the fact that a presupposition must be satisfied by its 

local context (see for example Karttunen 1974, Stalnaker 1974, Karttunen and Peters 

1979, Heim 1983, Roberts 1989, Roberts 1996a, Beaver 1995).2 Consider for example 

the case of conjunction, where the second conjunct has a presupposition, as the case in 

(85) and (86): 

 

(85) John used to smoke, and he stopped smoking 

(86) John took his doctor’s advice, and he stopped smoking. 

 

The first conjunct plays a role in determining whether a presupposition of the second 

conjunct will be inherited by the whole conjunction. This makes sense – the second 

conjunct is added to a context which  already includes the first conjunct. Hence, what 

is relevant for determining the whole conjunction’s presupposition is the local context 

of the second conjunct; this local context is derived from the original context by 

adding to it the information in the first conjunct. In example (85) above, the whole 

sentence does not inherit the second conjunct’s presupposition that John used to 

smoke, because this presupposition is already satisfied by its local context (it is 

entailed by the first conjunct). In example (86), the first conjunct does not entail the 

                                                 
2 Simons 2001 offers an alternative account of presuppositions associated with verbs like stop. 
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second conjunct’s presupposition, and in order for the local context to satisfy it, it 

must be included in the context of utterance of the whole sentence, i.e., presupposed 

by the whole sentence. Kadmon remarks that it doesn’t make sense to talk about 

scalar implicatures as being “satisfied”. No sensible notion of satisfaction exists for 

scalar implicatures – the information carried by a scalar implicature is part of the 

information that the speaker intends to communicate, not something which is taken 

for granted.  

 

A different approach, which I’ll adopt in this dissertation, is to explain cases of 

implicature ‘inheritance’ and ‘disappearance’ as following directly from the way they 

are computed. I’ll discuss implicatures in downward entailing contexts in chapter 5 

section 2, and cases where implicatures are ‘suspended’ (such as examples 78 and 79) 

in chapter 5, section 3.  

 

In the following chapters I propose an alternative to the Gricean way of deriving 

Quantity implicatures, an alternative that avoids the problems of Gricean theories, and 

explains in a straightforward way the facts about implicature ‘projection’.  
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Chapter 2 

Exhaustivity, Only and Scalar Implicatures 

 

 

In chapter 1 I presented the Gricean approach to the derivation of certain context 

dependent inferences which were labeled “Strong Quantity Implicatures” or “Scalar 

Implicatures”. In this chapter I’ll show that we can avoid many of the challenges to 

the Gricean approach if we adopt a different point of view. I’ll explore the possibility 

of analyzing these inferences as the result of the application of an exhaustivity 

operator, which is stipulated by Groenendijk and Stokhof (1984b), and can be thought 

of as an answerhood constraint within their theory of questions and answers.   

 

 

2.1 A sketch of Groenendijk and Stokhof’s theory of questions and answers 

 

Groenendijk and Stokhof (1984a, 1984b) take it that the denotation of a question in a 

world w0, is a proposition which expresses the true and complete answer to that 

question in w0. For example, the yes-no question, Does John come?, denotes in w0 the 

proposition that John comes, if John comes in w0 , and the proposition that John 

doesn’t come, if John doesn’t come in w0. The one-place constituent question, Who 

comes?, will denote in w0 - the proposition that only John, Bill and Sue come iff John, 

Bill and Sue are the only comers in w0.   
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(1) Does John come? ~> λw[COME(john, w) = COME(john, w0)] 

Who comes? ~> λw[λxCOME(x, w) = λxCOME(x, w0)] 

 

According to Groenendijk and Stokhof, the denotations of questions are computed in 

two steps. Questions have underlying abstracts: a truth value in the case of yes-no 

questions, a set in the case of one-place constituent questions, and a relation in the 

case of two-place constituent questions. The abstract of Does John come? is 1, if John 

actually comes, and 0 if John doesn’t come. The abstract of Who comes? is the set of 

comers, and the abstract of Who kissed who? is the set of ordered pairs of individuals 

in which the first kissed the second. A type shifting operation lifts the abstract to the 

proposition which is the denotation of the question. 

 

(2) The abstract of does John come? in w0  =  COME(john,w0) 

The abstract of who comes? in w0  =  λxCOME(x,w0) 

The abstract of who kissed who? in w0  =  λxλyKISS(x,y,w0) 

 

(3) LIFT[α] = λw[α[w/w0] =  α] 

where α[w/w0] is the result of replacing the free occurrences of w0 with w 

 in α  

 

(4) The extension of does John come? in w0 = LIFT[COME(john)] = 

λw[COME(john,w) = COME(john,w0)] 

The extension of who comes? in w0 = LIFT[λxCOME(x,w0)] =  

λw[λxCOME(x,w) = λxCOME(x,w0)] 
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The extension of who kissed who? in w0 = LIFT[λxλyKISS(x,y,w0)] =  

λw[λxλyKISS(x,y,w) = λxλyKISS(x,y,w0)] 

 

We get the intension of a question, by abstracting over the free variable w0 in the 

extension. Thus the intension of a question is a function from possible worlds to 

propositions: that function which assigns to every evaluation world w0, the 

proposition which is the true and complete answer to the question in w0. We can think 

of the intension of a question as a set of propositions, the set of all possible complete 

answers to the question.  

 

(5) The intension of does John come? = λw0λw[COME(john,w) = 

COME(john,w0)] 

The intension of who comes? = λw0λw[λxCOME(x,w) = λxCOME(x,w0)] 

The intension of who kisses who? = λw0λw[λxλyKISS(x,y,w) = 

λxλyKISS(x,y,w0)] 

 

A proposition that expresses a complete answer to a question in some world is a 

member of the intension of the question. A partial answer would be a proposition 

which is formed by a union of some propositions in the intension. For example, the 

proposition expressed by only John came is a complete answer to who came?, while 

the proposition expressed by John came is a partial answer.  

 

(6) Let Q be a question intension (a set of propositions), and let p be a  

proposition, 
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1. p is a complete semantic answer to Q iff p∈Q 

2. p is a partial semantic answer to Q iff p≠∅, and ∃X⊂Q: p=[X 

 

One place constituent questions can be answered not only with sentences (which 

express propositions), but with other types of constituents as well. For example, the 

answer nobody is intuitively also a complete answer to the question who came?, and 

the answer some men is intuitively a partial answer to that question. The notion of 

semantic answerhood can be formulated for short answers as well.  

 

(7) Let Q be a question such that its abstract denotes (in a world w0) the set P, 

and its intension is Q, and let T be a generalized quantifier (a set of sets),   

1. T is a complete short semantic answer to Q iff T(P) is defined and 

λw0T(P) is a complete semantic answer to Q. 

2. T is a partial short semantic answer to Q iff T(P) is defined and  

λw0T(P) is a partial semantic answer to Q. 

 

On Groenendijk and Stokhof’s theory, intensions of questions form partitions on the 

set of possible worlds.  

 

(8) A partition of W is a set P of subsets of W – called the blocks or cells of P, 

such that: 

1. For every B∈P: B≠∅ 

2. [{B: B∈P} = W 

3. for every B1, B2∈P, if B1≠B2, then B1∩B2=∅ 
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Intensions of questions are of the form λw0λw[α[w/w0] =α ], i.e., they are relations 

between possible worlds. It is not hard to see that this type of relation is reflexive, 

symmetric and transitive – it is an equivalence relation on the set of possible worlds. 

An equivalence relation on some set defines a partition of that set. The blocks of the 

partition are formed from the members of the set which are related to each other. Let 

me demonstrate this with an example.  

 

(9) Question: Who came? 

Intension of the question: λw0λw[λxCOME(x,w) = λxCOME(x,w0)] 

 

Let us assume for simplicity that the domain of individuals, D, consists only of two 

individuals: John and Mary. There are four propositions which are potential complete 

answers to our question: no one came, only John came, only Mary came, John and 

Mary came. The set of possible worlds, W, can be partitioned along these four 

options. The potential complete answers are the blocks of the partition. This view of 

questions fits naturally with the fact that a question is a request for information. If a 

complete and true answer is given, then the utterer of the question eliminates all 

blocks on the partition but one. If a true, but incomplete answer is given (for example, 

John came), the utterer eliminates some blocks of the partition (in this case the blocks 

where nobody came and where only Mary came). In both cases, when the question is 

answered, the utterer’s information increases: she locates herself in a smaller area of 

the range of possibilities.  

 

Sometimes, not the whole range of possible answers is open to us. The utterer of who 

came? may know, for example, that it is not the case that Mary came. In this case, the 
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answer John came serves (in the above example) as a complete answer to the 

question. To give another example, if someone asks whether she should take an 

umbrella, the reply it’s raining serves as a complete answer in the context where one 

takes an umbrella if it’s raining. We can define the notions of a complete or partial 

pragmatic answer in the following way: 

 

(10) ↑(I,p), the update of information I by proposition p, is I∩p, if I∩p ≠∅. It is 

I, otherwise. 

 

(11) p is a complete pragmatic answer to Q in I iff ↑(I,p)∈Q 

p is a partial pragmatic answer to Q in I iff ↑(I,p)≠∅, and ∃X⊂Q:  

↑(I,p)=[X 

 

 

2.2 Groenendijk and Stokhof’s exhaustivity operator and scalar 

       implicatures 

 

Groenendijk and Stokhof (1984b) observe that answers to questions are normally 

interpreted exhaustively. For example, the answer Galit to the question Who is writing 

a PhD in semantics? usually implies that no other student (in the linguistics 

department at Tel Aviv University) is writing a PhD in semantics . To account for 

this, they stipulate a semantic exhaustivity operator which relates the answer and the 

abstract underlying the question, and which is supposed to have the semantic effect of 

the word only. As we will see, many of the implicatures traditionally explained using 

Grice’s first maxim of Quantity can be accounted for with this operator. 
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The operator exh, given in (12) below, is applied to a pair consisting of the abstract 

underlying the question asked - represented by the variable P - and the short answer 

given - represented by the variable T. It ensures that the given answer is true - John 

comes, and exhaustive - no one else comes. If the answer is given in the form of a  

proposition, the operator will apply to the focused part, for example to John in 

[John]F comes. 

 

(12) exh = λTλP[T(P)∧¬∃Q[T(Q)∧Q ⊂ P]] 

 

I’ll illustrate how the exhaustivity operator works in a few examples. Later I discuss 

some examples where it fails. 

 

(13) Who came? 

[John and Mary]F came  

 

P= ABS(who came?) ~> λxCOME(x,w0) (tense is being ignored)  

T= john and mary ~> λP[P(j) ∧ P(m)] 

 

Exh(13) = λP[P(j) ∧ P(m)]( λxCOME(x,w0)) ∧¬∃Q[λP[P(j) ∧ P(m)](Q)∧Q ⊂ 

λxCOME(x,w0)]] = COME(j,w0) ∧ COME(m,w0) ∧ ¬∃Q[Q(j) ∧ Q(m) ∧Q⊂ 

λxCOME(x,w0)]] 

 

In words: John came and Mary came and there is no proper subset of the set of 

comers which includes John and Mary. 
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This means that only John and Mary came. Here’s why. Exh(13) requires that John 

and Mary came. Let us assume that Harry came as well, so λxCOME(x,w0) = {John, 

Mary, Harry}.  But then, {John, Mary} is a proper subset of λxCOME(x,w0), and this 

is not allowed by Exh(13). Hence λxCOME(x,w0) = {John, Mary}. 

 

(14) Whom did John kiss? 

John kissed [Sarah]F

 

P= ABS(whom did John kiss?) ~> λyKISS(j,y,w0) 

T= sarah ~> λP[P(s)] 

 

Exh(14) = KISS(j,s,w0) ∧¬∃Q[Q(s) ∧Q⊂ λyKISS(j,y,w0)]] 

 

In words: John kissed Sarah and there is no proper subset of the set of persons kissed 

by John, which includes Sarah. 

 

This means that John kissed only Sarah. If John kissed someone else as well, there 

would be a proper subset of individuals kissed by John that includes Sarah, like the set 

{Sarah}itself. 

 

We see that in these cases, exhaustiveness accounts for the inferences which were 

supposed to be scalar implicatures derived via scales such as <John, John and Mary, 

John and Mary and Harry, …>. For the implicature theory to work, we had to 

stipulate that all elements on the scale had the same monotonicity properties. This 
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stipulation was needed for excluding scales such as <John, only John>. If such a scale 

were allowed, there would be no reason why the sentence John came couldn’t  

implicate that not only John came (see chapter 1, section 1.4). As discussed in chapter 

1, section 1.6, the monotonicity stipulation is problematic. The exhaustivity operator 

gives the desired result without a monotonicity stipulation. 

 

Before we continue to look at more examples, I would like to state explicitly what it is 

that I’m proposing about scalar implicatures. I suggest that scalar implicatures are not 

implicatures (in the Gricean sense) at all. The inferences which are traditionally 

analyzed as scalar implicatures of a certain sentence, A, are merely entailments of 

exh(A, Q), where A is taken to be a complete or partial semantic answer to some 

question Q (Q may be explicit or implicit). 

 

I assume that question-answer pairs are systematically ambiguous between exhaustive 

and non-exhaustive interpretations, i.e., interpretations where exh applies and 

interpretations where exh doesn’t apply. Let us look at a few examples: 

 

(15) A: Who came? 

B: Bill, Mary and Sue 

A: Why didn’t Sarah come? 

 

(16) A: Who came? 

B: Bill, Mary and Sue 

A: And no one else? / Did anyone else come? 
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(17) A: Who came? 

B: Bill, Mary and Sue 

A: And who else? 

 

All the above short conversations are natural, and they show that A has the option to 

interpret B’s answer exhaustively (15 above), non-exhaustively (17 above), or wonder 

whether B’s answer should be interpreted exhaustively or non-exhaustively (16 

above).  

 

I take it that exh is a semantic operator, which strengthens the meaning of the answer 

it operates on in a certain way. This means that the implicature effect is really 

analyzed as an ambiguity. The stronger meaning of A is semantic - it is the effect of 

exh(A, Q). The inferences in question are not derived by assuming that stronger 

propositions than the one uttered are false, they are due to the semantic operator of 

exhaustivity. 

 

Grice’s (1989) point against an ambiguity theory for the kind of inferences he labeled 

‘generalized conversational implicatures’ is what he calls “Modified Occam’s Razor” 

- “senses are not to be multiplied beyond necessity”. What Grice had in mind was that 

we should not stipulate ‘unnecessary’ multiple meaning for lexical items. For 

example, it’s preferable to assume that the connective or has only an inclusive 

meaning (it is not ambiguous between an inclusive and an exclusive meaning). The 

exclusive interpretation should be derived from the inclusive meaning by some 

general pragmatic principles (though we saw in chapter 1 that Gricean theories have 

great difficulties in succeeding in this task).  
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The theory proposed here does not go against Grice’s “Modified Occam’s Razor” . I 

do not suggest that scalar implicatures are due to idiosyncratic ambiguities of certain 

lexical items. The source of the ambiguity in question is the optionality of the 

application of exh. I do not even stipulate a special sense for exh – I assume it has the 

meaning of the word only (though, as we will see later, Groenendijk and Stokhof’s 

semantics for exh is not good enough).  

 

Although the approach sketched here is essentially very different from the Gricean 

theory, the main notions of the Gricean theory can be (partially) translated into it. Let 

us restrict ourselves, for the moment, to explicit question-answer pairs. We start by 

defining the notion of an implicature.   

 

(18) A implicates B in the context of a question Q, if exh(A, Q) entails B, and 

A does not entail B. 

     

We preserve the context dependency and cancelability of implicatures. A sentence 

may have or may not have a certain implicature depending on which question it 

answers. What looks like canceling an implicature is merely weakening back from 

exh(A, Q) to A. I delay the discussion on explicit ‘suspension’ and ‘cancellation’ of 

implicatures to chapter 5, section 3.   

 

As already mentioned, I take exh to be a semantic operator with the meaning of only. 

This doesn’t mean that pragmatic factors are not involved. Obviously, exh is a very 

useful operator. It adds information to the meaning of the answer, and as we saw in 
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examples (13) and (14) above, its application sometimes turns partial semantic 

answers into complete semantic answers. Now, the word only, in virtue of its 

meaning, is a very convenient device in explicitly expressing complete semantic 

answers. I think it is not far-fetched to assume that users of language developed a 

certain convention about question answering; a convention according to which an 

answer can be or should be interpreted as implicitly containing only (in a position 

determined by the question). In Gricean terms: one may stipulate a Quality maxim for 

question answering: “Answer the question!”. But “Answer the Question!” on 

Groenendijk and Stokhof’s theory, means: give a true and complete answer to the 

question. This completeness is part of the Quantity maxim in Gricean theories, but in 

the theory suggested here, it is part of Quality (it is part of the definition of a true 

answer).  

 

Now, the meanings of sentences are often too weak to provide an answer that satisfies 

this strong Quality constraint. The assumption that nevertheless the answerer obeys 

the Quality maxim brings in the assumption that she meant her statement to be 

stronger than it strictly speaking is. If we assume that the hearer and the speaker 

know that an utterance of ϕ can be interpreted as an implicit utterance of exh(ϕ), the 

hearer can assume, with the maxim of Quality that the speaker’s utterance should be 

interpreted as exh(ϕ). The basic assumption to make this possible is that indeed the 

semantics allows systematically interpretations strengthened with exh. That is: ϕ can 

be interpreted as ϕ, but also as exh(ϕ). 

 

I cannot offer here a theory of how we choose between the strong and weak 

interpretations of answers. My intuitions are that given a question answer pair, we 

 56



tend to interpret the answer exhaustively (though it should be stressed that 

exhaustiveness itself is, often, a context-dependent, or context restricted notion. See 

discussion below).  

 

For the record, let me be precise here about the relation between Groenendijk and 

Stokhof’s theory and what I propose. In Groenendijk and Stokhof’s theory exh is a 

semantic operation which is part of the meaning of a statement as an answer to the 

question. My view is slightly different, though this difference may be merely 

cosmetic. I assume that exh is a semantic operation which can be part of the meaning 

of a sentence, even if not lexically expressed. So exh itself is not brought in by the 

question-answer relation as it is in Groenendijk and Stokhof’s theory, but is triggered 

by the latter by the maxim of Quality. 

 

The core of my proposal – and this is very different form Groenendijk and Stokhof’s 

theory,  is the strong interpretation of the maxim of Quality in the context of question-

answer pairs. My proposal is that an answer to a question which is not semantically 

complete violates Quality. Hence the semantics must provide a meaning for the 

sentence which doesn’t violate Quality (more about this in chapter 6). Groenendijk 

and Stokhof make a distinction between a semantic answer (a true and complete 

answer) and a pragmatic answer (an answer that may stand in a weaker relation). 

Crucially, then, I don’t follow Groenendijk and Stokhof here, and as we will see, that 

makes all the difference. 

 

Another point which I’ll have to address is that there are quite a bit more contexts 

than those where there is an explicit question available where exhaustiveness is 

 57



triggered. In absence of an explicit question or prosodically marked focus – which 

according to Roberts’ focus theory (Roberts 1996b), provides clues towards questions 

implicit in the discourse which the sentence answers – a certain sentence may have 

various possible strengthenings (i.e. we could take it as an answer to different 

questions). I will turn to this point in chapter 7.  

 

 

2.3 Groenendijk and Stokhof’s exhaustivity operator in complex examples 

 

Let us now see how Groenendijk and Stokhof’s exhaustivity operator fairs in more 

complicated examples.    

 

(19) Who came? 

[John or Mary]F came. 

 

P= ABS(who came?) ~> λxCOME(x,w0) 

T= john or mary ~> λP[P(j) ∨ P(m)] 

 

Exh(19) = COME(j,w0)∨COME(m,w0) ∧ ¬∃Q[[Q(j) ∨ Q(m)] ∧Q⊂ λxCOME(x,w0)]] 

 

In words: John came or Mary came and there is no proper subset of comers, which 

includes John or which includes Mary. 

 

This means that only John came or only Mary came. If both came, we could find a 

proper subset of comers which includes John, namely {John}. 
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The meaning of exh(19) can be split into 3 components: 

 

1. John or Mary came 

2. It is not the case that both John and Mary came 

3. No one who is not John or Mary came 

 

The first component is simply John or Mary came without exhaustivization. 

According to definition (18), both 2 and 3 are implicatures of John or Mary came in 

the context of who came?. This seems right for some contexts where (19) is used, but 

too strong for others – there are contexts where the use of John or Mary came as an 

answer to who came implicates 2 but not 3. How can we get this ‘intermediate’ 

strengthening?  One simple way is to assume that the abstract of who came? can 

contain some contextual restriction, C. This means that the question who came? is 

understood as which C’s came? In such cases we don’t expect the listener to specify 

all comers, but only a contextually relevant subset of comers.1  

 

(20) Who came?  

John or Bill. 

 

P= ABS(who came?) ~> λx[C(x,w0)∧COME(x,w0)] 

T= john or bill ~> λP[P(j) ∨ P(b)] 

 

                                                 
1 For a discussion on domain selection see for example Westerståhl 1984 and von Fintel 1994. 
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Exh(20) = [[C(j,w0)∧COME(j,w0)] ∨ [C(b,w0)∧COME(b,w0)]] ∧ ¬∃Q[[Q(j) ∨ Q(b)] 

∧Q ⊂ λy[C(y,w0)∧COME(y,w0)]] 

 

In words: John is an individual with property C who came or Bill is an individual with 

property C who came, and there is no proper subset of the set of individuals with 

property C who came, which includes John or which includes Bill. I.e. The only  

individual with property C who came is John or the only individual with property C 

who came is Bill. 

 

The answer presupposes that both John and Bill have the property C, and hence 

exh(20) retains the implicature 2, but not the implicature 3.   

 

I think that implicature 3 above is more common in cases where the question includes 

an explicit restriction as in (21): 

 

(21) Which pets does Mary have? 

Mary has a snake or an iguana. 

 

I think that the answer in (21) clearly implicates that Mary doesn’t have a cat.  

 

It is important to note that in the exhaustiveness analysis, the implicature that Mary 

doesn’t have a cat is linked to the implicature that Mary doesn’t have a snake and an 

iguana. We can explain the cases where both are present, and we can explain  the 

cases where only the latter is present, by assuming a contextual restriction on the 

question. Exhaustivization forces an exclusive interpretation for or. I think that this is 
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basically a good prediction. If the question in (21) is answered with an explicit use of 

only, Mary has only a snake or an iguana, we understand that Mary has only one pet. 

Note that Mary has only a snake or an iguana and maybe both sounds contradictory. 

However, I think that sometimes the answer in (21) can also be interpreted as 

conveying that Mary has a snake or an iguana and maybe both, but not other pets, and 

this fact remains unexplained so far. The interpretation that we need for this case is 

Mary has only [a snake or an iguana or both]. I’ll discuss this further in chapter 3.   

 

We see that exhaustivity predicts in a straightforward way the exclusive interpretation 

of or. Hence we don’t need to worry about the problem Gricean pragmatics has in 

excluding scales such as <a or b but not both, a or b> (see discussion  in chapter 1, 

sections 1.3.2 and 1.4).  

 

This analysis also helps us to solve a problem that Gricean pragmatics has with the 

implicature of sentences of the form A or B or C, a problem that I didn’t mention so 

far. Let us consider B’s answer to A’s question in (22) below: 

 

(22) A: Who kissed Sarah? 

B: John or Bill or Fred. 

  

Horn (1972) would predict that (22B) implicates the following: 

 

(23) It is not the case that John and Bill and Fred kissed Sarah. 

 

This is too weak. The right implicature is: 
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(24) Only John or only Bill or only Fred kissed Sarah 

 

The exhaustiveness analysis gets the correct inference without a problem. 

 

P= ABS(who kissed sarah?) ~> λxKISS(x,s,w0) 

T= john or bill or fred ~> λP[P(j) ∨ P(b) ∨ P(f)] 

 

Exh(22) = [KISS(j,s,w0)∨KISS(b,s,w0)∨KISS(f,s,w0)]∧¬∃Q[[Q(j,s)∨Q(b,s)∨Q(f,s)] 

∧Q⊂ λxKISS(x,s,w0)]] 

 

In words: John kissed Sarah or Bill kissed Sarah or Fred kissed Sarah and there is no 

subset of Sarah-kissers, which includes John or Bill or Fred. I.e. only John or only  

Bill or only Fred kissed Sarah. 

 

The following is another example where the exhaustivity operator fairs better than the 

implicature theory. 

 

(25) Who comes? 

Some man  

 

P= ABS(who comes?) ~> λxCOME(x,w0) 

T= some man ~> λP[λxMAN(x,w0)∩P≠∅]  
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exh(25) = λxMAN(x,w0)∩λxCOME(x,w0)≠∅ ∧¬∃Q[MAN(w0)∩Q≠∅ ∧ Q ⊂ 

λxCOME(x,w0)] 

 

In words: Some man comes and there is no proper subset of comers which are men  

 

Exh(25) means that one man comes, and nobody else comes. Suppose that John is a 

man that comes. If Harry or Mary came as well, there would be a proper subset of 

comers which are men – the set {John}. 

 

The effect of exhaustivization in this example is twofold: exactly one man comes, and 

only men come. According to definition (18), both are implicatures of (25). 

Furthermore, in a context where there is more than one man, we get an additional 

inference that not all men come. The latter inference is a classical implicature, 

traditionally accounted for via the <some, all> scale. The exhaustiveness analysis 

predicts this inference without extra work, since in most contexts the assumption that 

there is more than one man is warranted.  We also avoid the wrong prediction that the 

answer some man comes implicates that (the speaker knows that) John doesn’t come – 

an implicature that could, in principle, be derived using  the scale <some man, John>. 

The latter is a non-existent implicature which shows we somehow would have to 

block the scale <some man, John>. 

 

If we assume a contextual restriction, C, on the question, we predict a weaker 

implicature for (25): 

 

P= ABS(who comes?) ~> λx[C(x,w0)∧COME(x,w0)] 
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T= some man ~> λP[λxMAN(x,w0)∩P≠∅]  

 

exh(25’) = λxMAN(x,w0)∩λx[C(x,w0)∧COME(x,w0)]≠∅ ∧¬∃Q[MAN(w0)∩Q≠∅ ∧ 

Q ⊂ λx[C(x,w0)∧COME(x,w0)]] 

 

In words: Some man with a property C comes and there is no proper subset of comers 

with property C which are men.  

 

Exh(25’) is weaker than exh(25). It means that only one man with property C comes, 

and that no one else with property C comes. Exh(25’) allows other comers  as long as 

they don’t have some contextual property C. 

 

Groenendijk and Stokhof (1984b) show how the biconditional interpretation of a 

conditional is predicted, if an intensional version of the exhaustiveness operator is 

used.   

 

(26) Does John come? 

If Mary comes. 

 

P= ABS(does john come?) ~> λwCOME(j,w) (the set of worlds where John comes) 

T=  if mary comes ~> λP[λwCOME(m,w) ⊆ P]; P is a variable of type <s, <e,t>> 

 

Exh(26) = [λwCOME(m,w) ⊆ λwCOME(j,w)] ∧¬∃Q[λwCOME(m,w) ⊆ Q) ∧Q⊂ 

λwCOME(j,w)]] 
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Exh(26) is equivalent to the biconditional John comes if and only if Mary comes. It is 

easy to see this, if we look at diagram (A) below. The first main conjunct of exh(26) 

requires that the set of worlds λwCOME(m,w) is a subset of λwCOME(j,w). The 

second main conjunct of exh(26) disallows the existence of a set of worlds Q which is 

both a proper subset of λwCOME(j,w) and a superset of λwCOME(m,w). This means 

that λwCOME(m,w) itself cannot be a proper subset of λwCOME(j,w), hence it must 

be identical to it. But these are exactly the truth conditions of the biconditional. 

 

 

 

                       λwCOME(j,w) 

                      λwCOME(m,w) 

                                           Q 

                                                                       

 

                                                                     A 

 

Let us turn now to some cases with numerals. The question-answer pair in (27), with 

the focus on John, and not on three,  is a typical case where a numeral has an ‘at least 

interpretation’. Groenendijk and Stokhof’s exhaustivity operator predicts correctly 

that (27) does not implicate that John has at most 3 chairs.  

 

(27) Who has 3 chairs (that I can borrow)? 

[John]F has 3 chairs. 
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P= ABS(who has 3 chairs?) ~> λx|λy[CHAIR(y,w0)∧HAVE(x,y,w0)]| ≥ 3 

T= john ~> λP[P(j)]  

 

Exh(27) = |λy[CHAIR(y,w0)∧HAVE(j,y,w0)]| ≥ 3 ∧ ¬∃Q[Q(j) ∧Q⊂                    

λx|λy [CHAIR(y,w0) ∧HAVE(x,y,w0)]| ≥ 3|] 

 

In words: John has (at least) 3 chairs and there is no proper subset of possessors of (at 

least) 3 chairs, which includes John i.e. only John has (at least) 3 chairs. 

 

Exh(27) means that only John has at least 3 chairs; it means that nobody else has 3 or 

more chairs, but it doesn’t mean that John has exactly 3 chairs.   

In (28) it is the number that is focused. It is a typical case where a numeral is believed 

to trigger a scalar implicature. 

 

(28) How many chairs does John have? 

John has [3] F chairs. 

 

Groenendijk and Stokhof (1984b) did not deal with questions of the form how many?. 

I assume that a question such as How many chairs does John have? means something 

like Which number(s) is/are such that John has at least that many chairs? If John has, 

for example, exactly 3 chairs, then one, two and three are all such numbers. I’ll show 

that exhaustivity gives us the  ‘exactly interpretation’ of the number given as the 

answer. Assuming the above interpretation for the question, the abstract underlying it, 

is a set of numbers such that John has at least that number of chairs. In analogy to the 

who questions, where the short answers were taken to be generalized quantifiers 
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rather than individuals,  I assume that the answer, three, is a generalized quantifier 

over sets of numbers - the set of sets of numbers that contain the number 3.  

 

(28) How many chairs does John have? 

John has [3] F chairs. 

   

P = ABS(how many chairs does john have?) ~>  λn|λy[CHAIR(y,w0)∧HAVE(j,y,w0)]| ≥ n 

T = three ~> λP[P(3)] = λP∃n[n = 3 ∧ P(n)] 

 

exh(28) = |λy[CHAIR(y,w0) ∧HAVE(j,y,w0)]| ≥ 3 ∧ ¬∃Q[Q(3) ∧Q⊂ 

λn|λy[CHAIR(y,w0) ∧HAVE(j,y,w0)]| ≥ n] 

 

In words: John has at least 3 chairs, and there is no proper subset of numbers of chairs  

owned by John which contains 3.  

 

This means that the set of numbers of chairs owned by John is {1, 2, 3}. I.e. that John 

has exactly 3 chairs. The first main conjunct of exh(28) requires that John has at least 

3 chairs, the second main conjunct requires that John has no more than 3. If John had, 

for example, 4 chairs, then the set of numbers of chairs owned by John would be {1, 

2, 3, 4}. In that case, there would be a proper subset containing 3, for example, the set 

{1, 2, 3}.  

 

One might prefer (with Rullmann 1985) a question such as how many chairs does 

John have? to be interpreted as Which number is such that John has exactly that many 

chairs? rather than Which number(s) is/are such that John has at least that many 
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chairs? I chose the latter for generality considerations. It is possible to analyze the 

how many cases exactly in the same way as the who/which cases; i.e. to let 

exhaustiveness come from the question/answer relation. There is no need to assume 

that exhaustiveness is explicitly built into the meaning of  how many questions.    

 

So far Groenendijk and Stokhof’s analysis went very well. I now discuss two cases 

where the analysis does not make correct predictions. The first problem with the 

above analysis is that it wrongly predicts an ‘exactly interpretation’ also for (29). 

 

(29) How many chairs does John have? 

John has [at least 3] F chairs. 

 

P = ABS(how many chairs does John have?) ~> λn|λy[CHAIR(y,w0) ∧HAVE(j,y,w0)]| ≥ n 

T = at least three ~> λP∃n[n ≥ 3 ∧ P(n)] 

 

exh(29) = |λy[CHAIR(y,w0) ∧HAVE(j,y,w0)]| ≥ 3 ∧ ¬∃Q[∃n[n ≥ 3 ∧ Q(n)] ∧Q⊂ 

λn|λy[CHAIR(y,w0) ∧HAVE(j,y,w0)]| ≥ n] 

 

In words: John has at least 3 chairs, and there is no proper subset of numbers of chairs 

owned by John which contains a number larger or equal to 3.  

 

Exh(29), like exh(28) is also equivalent to ‘John has exactly 3 chairs’. The first main 

conjunct of exh(29) ensures that John has at least 3 chairs. Unfortunately, the second 

main conjunct of exh(29) requires that John doesn’t have more than 3 chairs. This is, 

of course, a wrong prediction. 
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A second case where Groenendijk and Stokhof’s exhaustivity fails is the plural (30).  

 

(30) Who came? 

Some men came 

 

Before working out this example, a brief presentation of the basic concepts of 

plurality theory is in order (see Scha 1981, Link 1983, Landman 1996). 

 

The domain of individuals, D, includes both singular and plural entities, structured by 

a part-of relation, v, “plural part-of”, which is a partial order on D. (In fact we follow 

Link 1983 and Landman 2004 in assuming that v is not just any partial order, but a 

partial order that gives D the structure of a complete atomic Boolean algebra. See the 

works mentioned for details). 

 

For ∀a, b∈D, D contains a plural individual, aVb, “the sum of a and b” (or the join 

of a and b), which is the smallest plural individual of D such that a v aVb and b v aVb. 

For ∀a, b∈D, D contains a plural individual, a`b, “the meet of a and b”, which is the 

biggest plural individual of D such that a`b v a and a`b v b. D is closed under sum and 

meet formations. We assume that D contains an “improper individual” 0, which is the 

minimum of D: for ∀d∈D, 0 v d. 
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For every non-empty X⊆D, VX, “the sum of X”, is the unique element (if there is 

such a unique element) that is the smallest element of D such that ∀x∈X: x v VX. 

Let P⊆D, σ(P) = VP if VP∈P, undefined otherwise (This analysis of σ goes back to 

Sharvy 1980. σ is taken to be the interpretation of the definite article the). 

 

a∈D is an atom iff for every b∈D, if b v a, then b=0 or b=a. ATOM is the set of 

atoms in D.  

 

Let P⊆D, *P ={d∈D: ∃X⊆ P: d= VX} (closure under sum). For example, if 

P={a,b,c}; *P={a,b,c, aVb, aVc, aVbVc}. The * operator is taken to be pluralization.  

 

Let d∈D, ATOM(d) = {a∈ATOM: a v d},  |d| = |ATOM(d)| 

 

Let us return now to the plural example: 

 

(30) Who came? 

Some men came 

 

P= ABS(who came?) ~>  λx*COME(x,w0) = the set of singular and plural individuals 

in the set of all sums of coming individuals. Note that x ranges over singular and 

plural individuals 

T = some men ~>  λP[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧P(x)] ; P is a variable ranging over 

sets of the form *X for some X⊆ATOM 
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exh(30) = [∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧λx*COME(x,w0)]∧¬∃Q[[∃x∈ 

λx*MAN(x,w0): |x| ≥ 1 ∧Q(x)]∧ [Q⊂ λx*COME(x,w0)]] 

 

In words: One or more men came. There is no proper subset of the set containing the 

singular and plural comers that contains one or more men.  

 

Like the singular case, discussed in (25) p. 62 above, exh(30) also means that only 

one man came. Here’s why. Let us assume that both John and Harry came, and no one 

else. In that case, λx*COME(x,w0) = {John, Harry, JohnVHarry}. But then {John} is a  

proper subset containing singular or plural men, and exh(30) is false. Hence, exh(30) 

entails that only one man came. This, of course, is the wrong prediction: Some men 

came (as an answer to who came?) doesn’t have such an implicature. 

 

The first challenge to an exhaustivity based implicature theory is to come up with the 

correct semantics of the exhaustivity operator, a semantics that will produce the 

desired inferences. Such a formulation will be suggested in chapter 3, but before that, 

I end this chapter by discussing briefly Bonomi and Casalegno’s (1993) semantics of 

only. 
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2.4 Bonomi and Casalegno’s semantics of only 

 

Bonomi and Casalegno (1993) suggest the following event based semantics for only:  

 

(31) Let x be a variable of type d (the type of individual and plural entities), let 

e, f and g be variables of type e (the type of events), let F be a variable of 

type <d,<e,t>>, let Q be a variable of type <<d,<e,t>>, <e,t>>, and let ⊆E 

be the inclusion relations between events. 

   

ONLY = λQλFλe[Q(F)(e)∧∀f[∃xF(x)(f) →∃g[Q(F)(g)∧f ⊆E g]]]  

 

Let me demonstrate this with an example. 

 

(32) Only [John]F cried 

 

John ~> λFλeF(j)(e) 

cried ~>  λxλe[CRIED(e) ∧ AG(e,x)] 

 

only John ~>   ONLY(j) = λQλFλe[Q(F)(e)∧∀f[∃xF(x)(f) →∃g[Q(F)(g)∧f ⊆E g]]]        

(λFλeF(j)(e)) = λFλe[F(j)(e)∧∀f[∃xF(x)(f) →∃g[F(j)(g)∧f ⊆E g]]] 

 

only John cried ~> λe[[CRIED(e)∧AG(e,j)] ∧ ∀f[∃x[CRIED(f) ∧ AG(f,x) 

→∃g[CRIED(g)∧AG(g,j) ∧ f ⊆E g]]] 
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The meaning of the sentence is derived by applying existential closure to this set of 

events, and we get: 

 

only John cried ~>     ∃e[[CRIED(e)∧AG(e,j)] ∧ ∀f[∃x[CRIED(f) ∧ AG(f,x) 

→∃g[CRIED(g)∧AG(g,j) ∧ f ⊆E g]]] 

 

In words: There is a crying event, e, whose agent is John, and for every crying event, 

f, whose agent is x, there is a crying event, g, whose agent is John, which includes f. 

 

(32) means that only John cried. If Bill cried as well, there would be an event of 

crying whose agent is Bill, which does not include an event of crying whose agent is 

John.  

 

Bonomi and Casalegno’s only, unlike Groenendijk and Stokhof’s exhaustivity 

operator gives the correct results in the case of plural NP’s. 

 

(33) Only [one or more boys]F cried  

 

one or more boys ~> λFλe∃x[x∈*BOY ∧ F(x)(e)] 

cried ~>  λxλe[CRIED(e) ∧ AG(e,x)] 

 

Only one or more boys ~>    λQλFλe[Q(F)(e)∧∀f[∃xF(x)(f) →∃g[Q(F)(g)∧f ⊆E g]]]      

(λFλe∃x[x∈*BOY ∧ F(x)(e)]) = λFλe[∃x[x∈*BOY ∧ F(x)(e)] ∧∀f[∃xF(x)(f) 

→∃g[∃x[x∈*BOY ∧ F(x)(g)] ∧f ⊆E g]]] 
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Only one or more boys cried ~>  λe[∃x[x∈*BOY∧ CRIED(e)∧AG(e,x)] ∧ 

∀f[∃x[CRIED(f) ∧ AG(f,x) →∃g[∃x[x∈*BOY ∧ CRIED(g)∧AG(g,x)] ∧ f ⊆E g]]] 

 

After existential closure we obtain: 

 

Only one or more boys cried ~>     ∃e[∃x[x∈*BOY∧ CRIED(e)∧AG(e,x)] ∧ 

∀f[∃x[CRIED(f) ∧ AG(f,x) →∃g[∃x[x∈*BOY ∧ CRIED(g)∧AG(g,x)] ∧ f ⊆E g]]] 

 

In words: There is crying event, e, whose agent is a plural individual of one or more 

boys, and for every crying event, f, whose agent is x, there is a crying event, g, whose 

agent is a plural individual of one or more boys, which includes f. 

 

(33) means that only boys cried. If a girl cried as well, there would be an event of 

crying whose agent is a girl, which does not include an event of crying whose agent is 

a boy. 

 

Bonomi and Casalegno offer a more complicated analysis to deal with cases where 

the focused element is something other than an NP. Let us see how they deal with a 

case of a number focus. 

 

(34) Only [two]F boys cried 

  

Bonomi and Casalegno suggest that an expression α of natural language should be 

translated to a pair <A,B> of expressions of the logical language. If α does not 

contain a focused element, then A=B, and each of them is simply the ‘normal’ 

 74



translation of the expression. If α contains a focused element, A≠B.  B is the ‘normal’ 

translation, while A is the ‘skeleton’ of the appropriate category. Bonomi and 

Casalegno specify a ‘skeleton’ for each category. (This idea is used in Krifka 1991 for 

a recursive definition of structured meanings. A structured meaning of a sentence is 

pair whose members are (i) the property obtained by λ-abstracting on the focus, and 

(ii) the ordinary semantic interpretation of the focus. The structured meaning theory 

of focus was developed in von Stechow 1981, Klein and von Stechow 1982, Jacobs 

1983 and von Stechow 1989).  

 

two ~> <λXλFλe∃x[x≠y ∧ ATOM(x,X) ∧ ATOM(y,Y) ∧ F(x∪d y)(e)], 

                               λXλFλe∃x∃y[x≠y ∧ ATOM(x,X) ∧ ATOM(y,Y) ∧ F(x∪d y)(e)]>  

 

X is a variable of type <d,t> 

 

[two]F ~> <λXλFλe[X(v) ∧ F(v)(e)],  

                               λXλFλe∃x∃y[x≠y ∧ ATOM(x,X) ∧ ATOM(y,Y) ∧ F(x∪d y)(e)]]> 

 

The first element in the pair is the ‘skeleton’ of the category of determiners. v is a 

variable of type d. 

 

boys ~> <*BOY, *BOY> 

cried ~>  <λxλe[CRIED(e) ∧ AG(e,x)], λxλe[CRIED(e) ∧ AG(e,x)]> 

 

Applying boys to [two]F gives:  
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[two]F boys ~>   <λFλe[*BOY(v) ∧ F(v)(e)],  

                     λFλe∃x∃y[x≠y ∧ ATOM(x,*BOY) ∧ ATOM(y,*BOY) ∧ F(x∪d y)(e)]]> 

 

This can be abbreviated to: 

 

<λFλe[*BOY(v) ∧ F(v)(e)],  

                                              λFλe∃x[TWO-BOYS(x) ∧ F(x)(e)]]> 

 

The new rules for only are as follows:  

 

(35) If A and B are expressions of type <e,t>, then  

ONLY<A,B> = λe[B(e)∧∀f[A*(f) →∃g[B(g)∧f ⊆E g]]], where *A is the  

existential closure of A. 

 

If A and B are expressions of type <a,b>, where b is a ‘normal’ type (<e,t> 

is a ‘normal’ type; if β is a normal type, then <α,β> is a ‘normal’ type), 

then ONLY<A,B> = λX.ONLY<A(X), B(X)> 

 

The translation of an expression of the form only α is <ONLY<A,B>, 

ONLY<A,B>>, where <A,B> is the translation of α. 

 

Applying only to [two]F boys yields in a pair <α, α> where α is equal to: 

 

λF.ONLY<λe[BOY(v) ∧ F(v)(e)], λe∃x[TWO-BOYS(x) ∧ F(x)(e)]]> =  
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λFλe[∃x[TWO-BOYS(x) ∧ F(x)(e)]∧∀f[∃v[*BOY(v) ∧ F(v)(f)] →∃g[∃x[TWO-

BOYS(x)∧ F(x)(g)∧f ⊆E g]]] 

 

Now we can apply CRIED, and existential closure on the set of events, and get: 

 

∃e[∃x[TWO-BOYS(x) ∧ CRIED(e) ∧ AG(e,x)]∧∀f[∃x[*BOY(x) ∧ CRIED(f) ∧ 

AG(f,x)] →∃g[∃x[TWO-BOYS(x)∧ CRIED(g) ∧ AG(g,x)∧f ⊆E g]]] 

 

In words: two boys cried, and every event of crying whose agent is a plural 

individual of one or more boys is included in an event of crying whose agent is a 

plural individual of two boys. 

 

This means that exactly two boys cried. If more than two cried, there would be an 

event of crying whose agent is more than 2 boys, and that event would not be 

included in an event of crying whose agent is a plural individual of two boys. 

 

Although Bonomi and Casalegno’s ONLY works for many cases, it does not 

always give the correct result. For example consider: 

 

(36) Only [some]F boys cried  

 

(36) strongly suggests (even maybe entails) that not all boys cried. I won’t give 

the derivation for this example, it is very similar to the derivation of (34). The 

reader can check for herself that what Bonomi and Casalegno get for (36) is the 

same as for Only [one or more]F boys cried: One or more boys cried, and every 
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event of crying whose agent is a plural individual of one or more boys is included 

in an event of crying whose agent is a plural individuals of one or more boys. But 

the two clearly differ. 

 

Bonomi and Casalegno mention exhaustiveness, and stipulate an answerhood 

operator ANS, that takes scope over answers. They suggest that the translation of 

ANS(α) is ONLY<A,B>, where <A,B> is the translation of α. Although Bonomi 

and Casalegno’s ONLY might be a promising starting point for formulating the 

semantics of the exhaustivity operator, I find it too complicated for my taste. 

Moreover, I’m not sure if and how it could be modified to handle example (36) 

and other cases (such as conditional sentences like example (26) in the previous 

section). In the next chapter I suggest a simpler semantics for the exhaustivity 

operator which is more in the style of Groenendijk and Stokhof, but one that 

works for a much wider range of cases.  
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Chapter 3 

Exhaustivity on the Domain of Singular and Plural Entities 

 

 

In this chapter and the next, I suggest reformulations of the exhaustivity operator, exh, 

that account for a large range of inferences which are traditionally seen as scalar 

implicatures. In this chapter I present a version of exh which deals with singular 

constituent questions whose short answers are singular and plural NP’s. According to 

my account, the exhaustivity operator makes use of the part-of relation on the domain 

of singular and plural entities, and of the summing operation over sets of these 

entities. In chapter 4 I generalize exh to deal with domains which use other orderings 

and maximality operations.  

 

My starting point is the plural example which is repeated in (1) below: 

 

(1) Who came? 

Some men came 

 

(2) Groenendijk and Stokhof’s exh = λTλP[T(P)∧¬∃Q[T(Q)∧Q ⊂ P]] 

 

The problem with Groenendijk and Stokhof’s exh (repeated in 2 above) is that the 

requirement on Q is too strong. We do not want to prevent the existence of proper 

subsets of comers which contain men, because exh(1) should allow more than one 

coming man. What we need is to rule out comers who aren’t men. My solution (which 
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will be tested in detail shortly) is roughly as follows: We look at every subset Q of 

plural comers which includes men, and which is closed under summing. The sum of 

each subset Q, should be a part of the men who come. In this way, we don’t exclude 

the cases where two or more man come, but we make sure that individuals who aren’t 

men don’t come – if, for example, a woman comes, one of the relevant subsets, Q, 

will include her, and therefore, its sum won’t be a part of the men who come. Recall 

that Groenendijk and Stokhof’s exhaustivity operator is a relation between the short 

answer (some men, in the case of 1) and the abstract underlying the question (come). 

But in order to capture the new condition, we also need the predicate men. This 

predicate is the predicative interpretation of some men (be some men). I assume that 

exhaustivity is a relation between the abstract underlying the question and a pair 

consisting of the generalized quantifier interpretation and the predicative 

interpretation of the constituent which serves as the short answer. 

 

(3) Let P and Q be variables ranging over sets of the form *X for some 

X⊆ATOM.  

We associate with noun phrases two interpretations. NPARG of type 

<<e,t>,t> and NPPRED of type <e,t>.  

Let T be a variable of type <<e,t>,t>×<e,t> (a variable over pairs of sets of 

sets and sets).  

If α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then vα1b = T and vα2b = P. 

 

exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → σQ v σ( T2∩P)] 
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For most cases discussed here we can assume that T2 = BE(T1), where BE = 

λTλx[T(λy[y=x])] (see Partee 1987), but not for some (see Landman 2004). In those 

cases I will specify T2 separately. 

 

The first main conjunct of (3) ensures that the short answer is indeed true. The set 

which is the interpretation of the abstract underlying the question (P) is a member of 

the set of sets which is the argument interpretation of the short answer (T1). The short 

answer doesn’t necessarily give us a full answer, i.e. a list of all individuals in P, but 

nevertheless it tells us something about them: these individuals are members of T2, the 

predicative interpretation of the NP given as the short answer. The second main 

conjunct of (3) gives us the exhaustiveness effect: the biggest plural individual in   

T2∩P (the set of individuals who fulfill both the restriction posed by the question and 

the restriction posed by the short answer) is the biggest plural individual which 

answers the question. This is done as follows. We look at every subset of P, Q, closed 

under sum formation, which is a member of T1 (i.e. every set of individuals closed 

under sum formation which answers the question partially or fully), the largest 

element in each of these sets (the sum of each set) is part of the largest element in 

T2∩P.  

 

Let us see now how (3) works for a large set of examples. 

 

(4) Who came? 

John   
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P= ABS(who came?) ~> λx*COME(x,w0) 

T1= john ~> λP[P(j)] 

T2=BE(john) = λx[λP[P(j)] (λy[y=x])] = λx(λy[y=x](j)) = λx(x=j)  

 

Exh(4) = *COME(j,w0) ∧∀Q[[Q(j) ∧Q ⊆ λx*COME(x,w0)] →  

     σQ v σ[λx(x=j) ∩λx*COME(x,w0)]]  

 

The first conjunct of exh(4) ensures that λx*COME(x,w0) includes at least John, 

hence σ[λx(x=j) ∩λx*COME(x,w0)]] =j, and exh(22) reduces to:  

Exh(4) = *COME(j,w0) ∧∀Q[[Q(j) ∧Q ⊆ λx*COME(x,w0)] → σQ v j] 

 

In words: John came, and for every subset of comers (closed under sum formation), 

which includes John, its sum is part of John. 

 

Exh(4) is true iff only John came. If John didn’t come, the first main conjunct of 

exh(4) is false, hence exh(4) cannot be true. We need to consider two cases:  the case 

where only John came, and the case where someone else came as well.   

 

Case1: Only John came 

vλx*COME(x,w0)b = {John} 

vQb = {John} 

vσQb = John 

vσ(λx(x=j)∩λx*COME(x,w0))b = vσ({John}∩ {John})b = John 
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Exh(4) requires that John came and that John v John. Both conditions are fulfilled, 

hence Exh(4) is true in this case. 

 

Case2: John and Mary came 

For simplicity let us consider the case where John and Mary came, and no one else.  

vλx*COME(x,w0)b = {John, Mary, JohnVMary} 

vQ1b = {John}; vQ2b = {John, Mary, JohnVMary} 

vσQ1b = John; vσQ2b = JohnVMary 

vσ(λx(x=j)∩λx*COME(x,w0))b = vσ[{John}∩ {John, Mary, JohnVMary})b = John 

 

Exh(4) is false in this case, because σQ2 (= JohnVMary) is not a part of John. It is easy 

to see that exh(4) is false in cases where more people came. 

 

We now look at a plural case. 

 

(5) Who came? 

John and Mary  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= john and mary ~> λP[P(jVm)] 

T2=BE(john and mary) = λx[λP[P(jVm)] (λy[y=x])] = λx(λy[y=x](jVm)) = λx(x=jVm)  
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Exh(5) = *COME(jVm,w0) ∧∀Q[[Q(jVm) ∧Q ⊆ λx*COME(x,w0)] →  

 σQ v σ[λx(x=jVm) ∩λx*COME(x,w0)]] 

 

The first main conjunct of exh(5) ensures that λx*COME(x,w0) includes at least John 

and Mary, hence σ[λx(x=jVm) ∩λx*COME(x,w0)]] = jVm, and exh(5) reduces to:  

Exh(5) = COME(jVm,w0) ∧∀Q[[Q(jVm) ∧Q ⊆ λx*COME(x,w0)] → σQ v jVm] 

 

In words: John and Mary came and for every subset of comers (closed under sum 

formation) which includes John and Mary, its sum is part of John and Mary. 

 

Exh(5)  means that only John and Mary came. Exh(5)’s first main conjunct requires 

that John and Mary came. Again, we’ll distinguish between two cases: where nobody 

else came, and where somebody came as well. 

 

Case1: Only John and Mary came 

vλx*COME(,w0)b = {John, Mary, JohnVMary} 

vQb = {John, Mary, JohnVMary} 

vσQb = JohnVMary 

vσ[λx(x=jVm)]∩λx*COME(x,w0)]b = vσ[{JohnVMary}∩{John, Mary, JohnVMary]b = 

JohnVMary 
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Exh(5) requires that JohnVMary came and that JohnVMary v JohnVMary. Both 

conditions are fulfilled, hence Exh(5) is true in this case. 

 

Case2: John and Mary and Bill came 

For simplicity let us consider the case where John, Mary and Bill came, and no one 

else.  

vλx*COME(x,w0)b = {John, Mary, Bill, JohnVMary, JohnVBill, MaryVBill, 

JohnVMaryVBill} 

vQ1b = {John, Mary, JohnVMary}; vQ2b = {John, Mary, Bill, JohnVMary, JohnVBill, 

MaryVBill, JohnVMaryVBill } 

vσQ1b = JohnVMary; vσQ2b = JohnVMaryVBill 

vσ[λx(x=jVm)]∩λx*COME(x,w0)]b = vσ[{JohnVMary}∩{{John, Mary, Bill, 

JohnVMary, JohnVBill, MaryVBill, JohnVMaryVBill]b = JohnVMary 

 

Exh(5) is false in this case, because σQ2 (=JohnVMaryVBill) is not a part of 

JohnVMary. It is easy to see that exh(5) is false in cases where more people came. 

 

I assume that John and Mary is ambiguous between a Boolean interpretation        

λP[P(j) ∧ P(m)],  and a sum interpretation λP[P(jVm)]. The above analysis used the 

sum interpretation. The Boolean interpretation gives the wrong result: 
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(6) Who came? 

John and Mary  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= john and mary ~> λP[P(j) ∧ P(m)] 

T2=BE(john and mary) = λx[λP[P(j) ∧ P(m)] (λy[y=x])] = λx(λy[y=x](j) ∧ 

λy[y=x](m)) = λx(x=j ∧ x=m)  

 

Exh(6) = [*COME(j,w0)∧*COME(m,w0)] ∧∀Q[[[Q(j) ∧ Q(m)]  ∧Q ⊆ 

λx*COME(x,w0)] → σQ v σ[[λx(x=j ∧ x=m)] ∩λx*COME(x,w0)]]] 

 

The set λx(x=j ∧ x=m) is necessarily empty, hence σ[[λx(x=j ∧ x=m)] 

∩λx*COME(x,w0)]] is necessarily undefined. This means that Exh(6) is false in the 

state of affairs in which only John and Mary came, because σQ, JohnVMary, is not a 

part of the ‘undefined element’. But of course, this is the wrong prediction. 

 

Is this a problem? I don’t think so. Notice that when we use in exh the Boolean 

interpretation, the semantics will involve by necessity a condition α v β, where β is 

undefined. We can plausibly assume that the essential undefinedness involved just 

blocks strengthening with the exhaustivity operator. In other words, strengthening the 

Boolean interpretation with exh gets a reading which is essentially trivial. But 

speakers are not likely to strengthen, if the non-strengthened meaning is non-trivial, 

and the strengthened meaning is. This means that the exhaustive reading is not 
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available when we use the Boolean interpretation, and hence, in fact, only 

strengthening with the plural interpretation λP[P(jVm)], is available.  

 

The next examples involve disjunction. 

 

(7) Who came? 

John or Mary  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= john or mary ~> λP[P(j) ∨ P(m)] 

T2=BE(john or mary) = λx[(x=j)∨(x=m)]   

 

Exh(7) = [*COME(j,w0) ∨ *COME(m,w0)]  ∧∀Q[[[Q(j) ∨ Q(m)]  ∧Q ⊆ 

λx*COME(x,w0)] → σQ v σ[[λx[(x=j)∨(x=m)] ∩λx*COME(x,w0)]]] 

 

The first conjunct of exh(7) ensures that λx*COME(x,w0) includes at least John or 

that it includes at least Mary, hence σ[[λx[(x=j)∨(x=m)] ∩λx*COME(x,w0)]] is only 

defined if λx*COME(x,w0) = j or if λx*COME(x,w0) = m , and exh(7) reduces to:  

Exh(7) = [*COME(j,w0) ∨ *COME(m,w0)]  ∧∀Q[[[Q(j) ∨ Q(m)]  ∧Q ⊆ 

λx*COME(x,w0)] → (σQ v j ∨ σ Q v m)] 

 

In words: John or Mary came and for every subset of comers (closed under sum 

formation) which includes John or which includes Mary, its sum is part of John or 

part of Mary. 
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Exh(7)  means that only John came or only Mary came. Exh(7)’s first main conjunct 

requires that John or Mary came. Three cases can be distinguished: only John came, 

only Mary came, John and somebody else came or Mary and somebody else came.  

 

Case1: Only John came 

vλx*COME(x,w0)b = {John} 

vQb = {John} 

vσQb = John 

vσ(λx[(x=j)∨(x=m)] ∩λx*COME(x,w0))b = vσ({John, Mary}∩{John})b = John 

 

Exh(7) requires that John or Mary came and that John v John. Both conditions are 

fulfilled, hence Exh(7) is true in this case. 

 

Case2: Only Mary came 

vλx*COME(x,w0)b = {Mary} 

vQb = {Mary} 

vσQb = Mary 

vσ(λx[(x=j)∨(x=m)] ∩λx*COME(x,w0))b = vσ({John, Mary}∩{Mary})b = Mary 

 

Exh(7) requires that John or Mary came and that Mary v Mary. Both conditions are 

fulfilled, hence Exh(7) is true in this case. 
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Case3: John and Mary came 

For simplicity let us consider the case where John and Mary came, and no one else.  

vλx*COME(x,w0)b = {John, Mary, JohnVMary} 

vQ1b = {John}; vQ2b = {Mary};  vQ3b = {John, Mary, JohnVMary} 

vσQ1b = John; vσQ2b = Mary;  vσQ3b = JohnVMary 

vσ(λx[(x=j) )∨(x=m)]) ∩λx*COME(x,w0))b = vσ({John, Mary}∩ {John, Mary, 

JohnVMary})b = vσ({John, Mary})b = ⊥ 

 

Exh(7) is false in this case, because, for example, σQ1 (= John) is not a part of ⊥. It is 

easy to see that exh(7) is false in also in the general cases where John and someone 

else came, and where Mary and someone else came.  

 

When discussing examples with or in the previous chapter (examples 19-21 in section 

2.3), we mentioned the possibility of an exhaustive interpretation for or, which 

doesn’t have the exclusivity effect (i.e. John or Mary or both came, and no one else). 

How can we get this reading? Let us look at (8) and (9): 

 

(8) The guest is John or Mary 

(9) The guests are John or Mary 

 

All my informants agreed that (8) presupposes that there is only one guest, and asserts 

that this guest is John or Mary. Not all my informants were happy with (9), but those 

who accepted it, understood it as conveying that either that there is only one guest 

who is John or Mary, or that there are two guests, John and Mary:  
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(10) σ(*GUEST) = j ∨ σ(*GUEST) = m ∨ σ(*GUEST) = jVm 

 

This fact might pose a problem for plurality theory (how can we compositionally 

interpret 9 as 10?). However the problem resolves if we assume that John or Mary can 

have the following set interpretation: T2 =  λx[(x=j)∨(x=m)∨(x= jVm)]. Using this 

interpretation, we can get an exhaustivity effect without the exclusivity effect.  

   

(11) Who came? 

John or Mary  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= john or mary ~> λP[P(j)∨P(m)] 

T2 = john or mary ~> λx[(x=j)∨(x=m)∨(x= jVm)] 

 

Exh(11) = [*COME(j,w0)∨*COME(m,w0]  ∧∀Q[[[Q(j) ∨ Q(m)]  ∧Q ⊆ 

λx*COME(x,w0)] → σQ v σ[[λx[(x=j)∨(x=m) ∨(x= jVm)] ∩λx*COME(x,w0)]]] 

 

The first conjunct of exh(11) ensures that λx*COME(x,w0) includes John or Mary, 

hence σ[[λx[(x=j)∨(x=m)∨(x= jVm)] ∩λx*COME(x,w0)]] is only defined if 

λx*COME(x,w0) = {j} or if λx*COME(x,w0) = {m} or if λx*COME(x,w0) = {j,m, 

jVm}, and exh(10) reduces to:  
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Exh(11) = [*COME(j,w0) ∨ *COME(m,w0)]  ∧∀Q[[[Q(j) ∨ Q(m)]  ∧Q ⊆ 

λx*COME(x,w0)] → (σQ v j ∨ σQ v m ∨ σQ v  jVm )] 

 

In words: John or Mary came and for every subset of comers (closed under sum 

formation) which includes John or which includes Mary, its sum is part of John or 

part of Mary or part of John and Mary. 

 

It is not hard to see that exh(11) means that only John came or only Mary came or 

only John and Mary came. 

 

A similar problem for plurality theory arises with constituents of the form John and 

(Mary or Sarah). (12) has the interpretation (13): 

 

(12) The guests are John and (Mary or Sarah) 

(13) σ(*GUEST) = jVm ∨ σ(*GUEST) = jVs  

 

Again, for my purposes it is enough to assume that John and (Mary or Sarah) has the 

following set interpretation: T2 = λx([x=jVm]∨[x= jVs]). 

 

(14) Who came? 

John and (Mary or Sarah) 

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1 = john and (mary or sarah) ~> λP[P(j)∧(P(m)∨P(s))] 
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T2 = john and (mary or sarah) ~> λx([x=jVm]∨[x= jVs]) 

 

Exh(14) = [*COME(j,w0) ∧ (*COME(m,w0)  ∨ *COME(s,w0))]  ∧∀Q[[[Q(j) ∧ 

((Q(m) ∨ Q(s))]  ∧Q ⊆ λx*COME(x,w0)] → σQ v σ[λx([x=jVm]∨[x= 

jVs])∩λx*COME(x,w0)]]] 

 

The first conjunct of exh(14) ensures that λx*COME(x,w0) includes John and Mary, 

or includes John and Sarah, hence σ[λx([x=jVm]∨[x= jVs])∩λx*COME(x,w0)]] is 

only defined if λx*COME(x,w0) = {jVm} or if λx*COME(x,w0) = {jVs}; and  exh(14) 

reduces to:  

Exh(14) = [*COME(j,w0) ∧ (*COME(m,w0)  ∨ *COME(s,w0))]  ∧∀Q[[[Q(j) ∧ 

((Q(m) ∨ Q(s))]  ∧Q ⊆ λx*COME(x,w0)] → (σQ v jVm ∨ σQ v jVs)]  

 

In words: John and (Mary or Sarah) came, and for every subset of comers  

(closed under sum formation), which includes John and (Mary or Sarah), its sum is a 

part of John and Mary or is a part of John and Sarah. 

 

Exh(14) means that only John and Mary came or only John and Sarah came. We’ll 

distinguish between three cases: where only John and Mary came, where only John 

and Sarah came and where John, Mary and somebody else came or John, Sarah and 

somebody else came. 

 

 92



Case1: Only John and Mary came 

vλx*COME(x,w0)b = {John, Mary, JohnVMary} 

vQb = {John, Mary, JohnVMary} 

vσQb = JohnVMary 

vσ[λx([x=jVm]∨[x= jVs])∩λx*COME(x,w0)]b = vσ[{JohnVMary, 

JohnVSarah}∩{John, Mary, JohnVMary}]b = vσ[{JohnVMary}]b = JohnVMary 

 

Exh(14) requires that JohnVMary or JohnVSarah came and that JohnVMary v 

JohnVMary. Both conditions are fulfilled, hence Exh(14) is true in this case. 

 

Case2: Only John and Sarah came 

vλx*COME(x,w0)b = {John, Sarah, JohnVSarah} 

vQb = {John, Mary, JohnVSarah} 

vσQb = JohnVSarah 

vσ[λx([x=jVm]∨[x= jVs])∩λx*COME(x,w0)]b = vσ[{JohnVMary, 

JohnVSarah}∩{John, Mary, JohnVSarah}]b = vσ[{JohnVSarah}]b = JohnVSarah 

 

Exh(14) requires that JohnVMary or JohnVSarah came and that JohnVSarah v 

JohnVSarah. Both conditions are fulfilled, hence Exh(14) is true in this case. 
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Case3: John, Mary and Sarah came 

For simplicity let us consider the case where John, Mary and Sarah came, and no one 

else cames.  

vλx*COME(x,w0)b = {John, Mary, Sarah, JohnVMary, JohnVSarah, SarahVMary, 

JohnVMaryVSarah} 

vQ1b = {John, Mary, JohnVMary}; vQ2b = {John, Sarah, JohnVSarah};  vQ3b = {John, 

Mary, Sarah, JohnVMary, JohnVSarah, SarahVMary, JohnVMaryVSarah} 

vσQ1b = JohnVMary; vσQ2b = JohnVSarah;  vσQ3b = JohnVMaryVSarah 

vσ[λx([x=jVm]∨[x= jVs])∩λx*COME(x,w0)]b = vσ[{JohnVMary, 

JohnVSarah}∩{John, Mary, Sarah, JohnVMary, JohnVSarah, SarahVMary, 

JohnVMaryVSarah}]b = vσ[{ JohnVMary, JohnVSarah}]b = ⊥ 

 

Exh(14) is false in this case, because σQ1 (=JohnVMary) is not a part of ⊥. It is easy 

to see that exh(14) is false in also in the general cases where John, Mary and someone 

else came, and where John, Sarah and someone else came.  

 

Concerning examples (11) and (14), there is a general problem of determining T2. 

How do we get the above predicative interpretations of the complex noun phrases? 

These problems have been discussed to some extent in Winter (1998) and Landman 

(2004). I do not have a theory to offer on this account – this problem is not the one 

this thesis is about. However, it is plausible, that any current theory of predicative 

interpretations should derive the meanings given as available predicate interpretations. 

What I show is that given that, my account of exh makes the correct predictions. 
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Let us consider now some examples with quantifiers and numerals. 

 

(15) Who came? 

some man  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= some man ~> λP[λxMAN(x,w0)∩P≠∅] 

T2= BE(some man) = λx[λP[λzMAN(z,w0)∩P≠∅](λy[y=x])] = λx[λzMAN(z,w0) 

∩λy[y=x] ≠∅] = λx[{x}∩λzMAN(z,w0) ≠∅] = λxMAN(x,w0) 

 

exh(15) = λxMAN(x,w0)∩λx*COME(x,w0)≠∅ ∧∀Q[[λxMAN(x,w0)∩Q≠∅ ∧Q ⊆ 

λx*COME(x,w0)] → σQ v σ(λxMAN(x,w0)∩ λx*COME(x,w0))] 

 

In words: Some man came, and for every subset of comers (closed under sum 

formation) which include singular men, its sum is a part of the man who came. 

 

The first main conjunct of exh(15) requires that there is at least one man who came. 

λxMAN(x,w0) is a set of atoms. Thus σ(λxMAN(x,w0)∩ λx*COME(x,w0)) is defined 

only if λx*COME(x,w0) contains only one man. λx*COME(x,w0) cannot contain 

non-men, if it did, then λx*COME(x,w0) itself would be a subset whose largest 

member is not a part of the man who came. 
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Exh(15) means that one man came, and nobody else come. Let us consider 3 cases: 

only one man came (and nobody else come), only men came, a man and a non-man 

came. 

 

Case1: One man came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill} 

vλx*COME(x,w0)b = {John} 

vQb = {John} 

vσQb = John 

vσ(λxMAN(x,w0)∩ λx*COME(x,w0))b = vσ({John, Harry, Bill}∩ {John})b = John 

 

Exh(15) requires that the set {John, Harry}∩{John} be non empty, and that John v 

John. Both conditions are fulfilled, hence Exh(15) is true in this case. 

 

Case2: Only men came 

For simplicity let us consider the case where John and Harry came, and no one else.  

vλxMAN(x,w0)b = {John, Harry, Bill} 

vλx*COME(x,w0)b = {John, Harry, JohnVHarry} 

vQ1b = {John}; vQ2b = {Harry}; vQ3b = {John, Harry, JohnVHarry} 

vσQ1b = John; vσQ2b = Harry; vσQ3b = JohnVHarry 

vσ(λxMAN(x,w0)∩ λx*COME(x,w0))b = vσ({John, Harry, Bill}∩ {John, Harry, 

JohnVHarry})b = vσ({John, Harry})b = ⊥ 
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Exh(15) is false in this case because σQ1 (=John), for example, is not a part of ⊥ 

 

Case3: A man and a non-man came 

For simplicity let us consider the case where John and Mary came, and no one else.  

vλxMAN(x,w0)b = {John, Harry, Bill} 

vλxWOMAN(x,w0)b = {Mary, Sarah} 

vλx*COME(x,w0)b = {John, Mary, JohnVMary} 

vQ1b = {John}; vQ2b = {John, Mary, JohnVMary} 

vσQ1b = John; vσQ2b = JohnVMary 

vσ(λxMAN(x,w0)∩ λx*COME(x,w0))b = vσ({John, Harry}∩ {John, Mary, 

JohnVMary})b = vσ({John})b = John 

 

Exh(15) is false in this case because σQ2 (=JohnVMary) is not a part of John. 

 

Now we come to a case that went wrong for Groenendijk and Stokhof. 

 

(16) Who came? 

some men  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= some men ~> λP[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧P(x)] 
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T2= BE(some men) = λz[λP[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧P(x)](λy[y=z])] = 

λz[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧ λy[y=z](x)]  = λz[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧ 

x=z]  = λx*MAN(x,w0) 

 

exh(16) = ∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧ *COME(x,w0) ∧ 

                ∀Q[[∃x∈λx*MAN(x,w0): |x| ≥ 1 ∧Q(x)] ∧ Q⊆λx*COME(x,w0)] →  

                                                                 σQ v σ(λx*MAN(x,w0) ∩λx*COME(x,w0))] 

 

In words: at least one man came, and for every subset of comers (closed under sum) 

which include men, its sum is a part of the men who came.  

 

Exh(16) means that only men came. Let us consider 2 cases: a case where only men 

came, and a case where non-men came as well.  

 

Case1: Only men came 

For simplicity let us consider the case where John and Harry came, and no one else.  

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry } 

vλx*COME(x,w0)b = {John, Harry, JohnVHarry} 

vQ1b = {John}; vQ2b = {Harry}; vQ3b = {John, Harry, JohnVHarry} 

vσQ1b = John; vσQ2b = Harry; vσQ3b = JohnVHarry 

vσ(*MAN ∩ λx*COME(x,w0))b = vσ({John, Harry, JohnVHarry})b =  JohnVHarry 
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Exh(16) requires that at least one man came, and that John, Harry and JohnVHarry be 

all part of  JohnVHarry. All conditions are fulfilled, hence Exh(16) is true in this case. 

 

Case2: Men and a non-men came 

For simplicity let us consider the case where John, Harry and Mary came, and no one 

else.  

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry } 

vλxWOMAN(x,w0)b = {Mary, Sarah} 

vλx*COME(x,w0)b = {John, Mary, Harry, JohnVMary, JohnVHarry, MaryVHarry, 

JohnVMaryVHarry} 

vQ1b = {John}; vQ1b = {Harry}; vQ3b = {John, Mary, JohnVMary}; vQ4b = {John, 

Harry, JohnVHarry}; vQ5b = {John, Mary, Harry, JohnVMary, JohnVHarry, 

MaryVHarry, JohnVMaryVHarry} 

vσQ1b = John; vσQ2b = Harry; vσQ3b = JohnVMary; vσQ4b = JohnVHarry; vσQ5b = 

JohnVMaryVHarry 

vσ(*MAN∩λx*COME(x,w0))b = vσ({John, Harry, JohnVHarry})b = JohnVHarry 

 

Exh(16) is false in this case because σQ3 (=JohnVMary), for example, is not a part of 

JohnVHarry. 
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Thus the current analysis improves over Groenendijk and Stokhof. We correctly 

predict that some men came as an answer to Who came? implicates that only men 

came, and not that only one man comes. If the question includes a contextual 

restriction, C (see the discussion in chapter 2, section 2.3), the implicature is 

weakened to only C’s who are men came.   

 

It is important to note here that there are two other implicatures which are 

traditionally associated with Some men came which we do not account for so far: 

 

1. More than one man came.  

2. Not all men came 

 

We analyzed some men as being synonymous to at least one man. And, indeed, At 

least one man came as an answer to who came? does not implicate 1 and 2 above.  

However, Some men came does implicate that more than one men came. I think that 

this is a conventional implicature associated with the use of the plural noun, men. 

We could, of course, analyze men as denoting only non atomic elements in *MAN. 

But then, the sentence There were no men at the party would be compatible with 

exactly one man being at the party, which is wrong. This point has been made 

repeatedly in the literature about plurality, see, for example, Landman (2000) and 

references therein. 

 

Concerning 2, I’m not at all convinced that it is a real implicature of Some men came 

in the context of Who came?. Obviously, there are more contexts where Some men 
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came and not all men came are true than contexts where Some men came and all men 

came are true, but I don’t think that the speaker who answers who came? by Some 

men commits herself only to states of affairs where not all men came. However, 

uttered out of the blue Some men came can implicate that not all men come, especially 

when some is focused. We will see in the next chapter that in the context of the 

question How many men came?, exhaustivity predicts that  Some men came implicates 

that not all men came (and doesn’t implicate that only men came).   

 

Next we discuss examples with numerals. 

 

(17) Who came? 

Three men 

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= three men ~> λP[∃x∈λx*MAN(x,w0): |x| = 3 ∧P(x)] 

T2=BE(three men) = λz[λP[∃x∈λx*MAN(x,w0): |x| = 3 ∧P(x)](λy[y=z])] = 

λz[∃x∈λx*MAN(x,w0): |x| = 3 ∧ λy[y=x](z)]  = λz[∃x∈λx*MAN(x,w0): |x| = 3 ∧ 

x=z]  = λx[*MAN(x,w0) ∧ |x|=3] 

 

exh(17) = ∃x∈λx*MAN(x,w0): |x| = 3 ∧ *COME(x,w0) ∧ 

                ∀Q[[∃x∈λx*MAN(x,w0): |x| = 3 ∧Q(x)] ∧Q ⊆ λx*COME(x,w0)] →  

  σQ v σ(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0))] 
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In words: there is a sum of men with exactly 3 atomic elements who came, and for  

every subset of comers (closed under sum formation) which includes a sum of men 

with exactly 3 atomic elements, its sum is a part of the men with exactly 3 atomic 

elements who came.  

 

The first main conjunct of exh(17) ensures that at least 3 men came, hence the set 

(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0)) is non-empty. If there are exactly 3 

men that came, this set is a singleton, and σ(λx[*MAN(x,w0) ∧ |x|=3]∩ 

λx*COME(x,w0))] is defined. 

 

Exh(17) means that exactly three men came, and no one else. Let us consider 3 cases: 

a case where exactly 3 men came and no one else, a case where more than 3 men 

came and no one else, and a case where exactly 3 men and one woman came.   

 

Case1: Only three men came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill} 

vλx*MAN(x,w0)b = {John, Harry, Bill, JohnVHarry, JohnVBill, HarryVBill, 

JohnVHarryVBill} 

vλx*COME(x,w0)b = {John, Harry, Bill, JohnVHarry, JohnVBill, HarryVBill, 

JohnVHarryVBill} 

vQb = {John, Harry, Bill, JohnVHarry, JohnVBill, HarryVBill, JohnVHarryVBill} 

vσQb = JohnVHarryVBill 
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vσ(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0))b = vσ({JohnVHarryVBill})b = 

JohnVHarryVBill 

 

Exh(17) requires that there be a sum of men with exactly 3 elements that came, and 

that JohnVHarryVBill be a part JohnVHarryVBill. These conditions are fulfilled, hence 

Exh(17) is true in this case. 

 

Case2: More than three men came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill, Fred} 

vλx*MAN(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred HarryVBillVFred, JohnVHarryVBillVFred} 

vλx*COME(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred, HarryVBillVFred, JohnVHarryVBillVFred} 

vQ1b = {John, Harry, Bill, JohnVHarry, JohnVBill, HarryVBill, JohnVHarryVBill} 

vQ2b = {John, Harry, Fred, JohnVHarry, JohnVFred, HarryVFred, JohnVHarryVFred} 

vQ3b = {John, Bill, Fred, JohnVBill, JohnVFred, BillVFred, JohnVBillVFred} 

vQ4b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, HarryVBill, 

HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, JohnVBillVFred 

HarryVBillVFred, JohnVHarryVBillVFred} 
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vσQ1b = JohnVHarryVBill; vσQ2b = JohnVHarryVFred; vσQ3b = JohnVBillVFred; 

vσQ4b = JohnVHarryVBillVFred 

vσ(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0))b = vσ({ JohnVHarryVBill, 

JohnVHarryVFred, JohnVBillVFred)b = ⊥ 

 

In this case σ(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0)) is undefined. For all Q’s,   

σQ is not part of ⊥, hence exh(34) is false. 

 

Case3: Exactly three men and one woman came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill, Fred} 

vλx*MAN(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred HarryVBillVFred, JohnVHarryVBillVFred} 

vλxWOMAN(x,w0)b = {Mary, Sarah} 

vλx*COME(x,w0)b = {John, Harry, Bill, Sarah, JohnVHarry, JohnVBill, JohnVSarah, 

HarryVBill, HarryVSarah, BillVSarah, JohnVHarryVBill, JohnVHarryVSarah, 

JohnVBillVSarah, HarryVBillVSarah, JohnVHarryVBillVSarah} 

vQ1b = {John, Harry, Bill, JohnVHarry, JohnVBill, JohnVHarryVBill} 

vQ2b = {John, Harry, Bill, Sarah, JohnVHarry, JohnVBill, JohnVSarah, HarryVBill, 

HarryVSarah, BillVSarah, JohnVHarryVBill, JohnVHarryVSarah, JohnVBillVSarah, 

HarryVBillVSarah, JohnVHarryVBillVSarah} 
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vσQ1b = JohnVHarryVBill; vσQ2b = JohnVHarryVBillVSarah 

vσ(λx[*MAN(x,w0) ∧ |x|=3]∩ λx*COME(x,w0))b = vσ({JohnVHarryVBill})b = 

JohnVHarryVBill 

 

Exh(17) is false because, σQ2 (JohnVHarryVBillVSarah) is a not part of 

JohnVHarryVBill. 

 

The effect of exhaustivization in this example is twofold: exactly three men came, and 

only men came. According to definition (18) (in section 2.2, chapter 2), both are 

implicatures of (17). This seems right for this context. However, out of the blue Three 

men came can have the first implicature without the second. We will see in the next 

chapter that exhaustivity predicts this fact when Three men came is considered as an 

answer to How many men came?. 

 

(18) Who came? 

At least three men 

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= at least three men ~> λP[∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧P(x)] 

T2 = BE(at least three men) = λz[λP[∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧P(x)](λy[y=z])] = 

λz[∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧ λy[y=x](z)]  = λz[∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧ 

x=z]  = λx[*MAN(x,w0) ∧ |x| ≥3] 
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exh(18) = ∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧ *COME(x,w0) ∧ 

                 ∀Q[[∃x∈λx*MAN(x,w0): |x| ≥ 3 ∧Q(x)] ∧Q ⊆ λx*COME(x,w0)] → 

                                             σQ v σ(λx[λx*MAN(x,w0)∧ |x| ≥ 3]∩ λx*COME(x,w0))] 

 

In words: there is a sum of men with at least 3 atomic elements who came, and for 

every subset of comers (closed under sum formation) which includes a sum of men 

with at least 3 atomic elements, its sum is a part of the men with at least 3 atomic 

elements who came.  

 

Exh(18) means that at least three men came, and no one else. Let us consider 2 cases: 

a case where 4 men came and no one else, and a case where 3 men and one woman 

came.   

 

Case1: four men came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill, Fred} 

vλx*MAN(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred HarryVBillVFred, JohnVHarryVBillVFred} 

vλx*COME(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred, HarryVBillVFred, JohnVHarryVBillVFred} 

vQ1b = {John, Harry, Bill, JohnVHarry, JohnVBill, JohnVHarryVBill} 

vQ2b = {John, Harry, Fred, JohnVHarry, JohnVFred, JohnVHarryVFred} 
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vQ3b = {John, Bill, Fred, JohnVBill, JohnVFrd, JohnVBillVFred} 

vQ4b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, HarryVBill, 

HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, JohnVBillVFred 

HarryVBillVFred, JohnVHarryVBillVFred} 

vσQ1b = JohnVHarryVBill; vσQ2b = JohnVHarryVFred; vσQ3b = JohnVBillVFred; 

vσQ4b = JohnVHarryVBillVFred 

vσ(λx[λx*MAN(x,w0)∧ |x| ≥ 3]∩ λx*COME(x,w0))b = vσ({ JohnVHarryVBill, 

JohnVHarryVFred, JohnVBillVFred, JohnVHarryVBillVFred})b = JohnVHarryVBillVFred 

 

Exh(18) requires that there be a plural man with at least 3 elements that came, and 

that JohnVHarryVBill, JohnVHarryVFred, JohnVBillVFred, JohnVHarryVBillVFred be 

all parts of JohnVHarryVBillVFred. All these conditions are fulfilled, hence Exh(18) is 

true in this case. 

 

Case2: Exactly three men and one woman came, and no one else 

vλxMAN(x,w0)b = {John, Harry, Bill, Fred} 

vλx*MAN(x,w0)b = {John, Harry, Bill, Fred, JohnVHarry, JohnVBill, JohnVFred, 

HarryVBill, HarryVFred, BillVFred, JohnVHarryVBill, JohnVHarryVFred, 

JohnVBillVFred HarryVBillVFred, JohnVHarryVBillVFred} 

vλxWOMAN(x,w0)b = {Mary, Sarah} 
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vλx*COME(x,w0)b = {John, Harry, Bill, Sarah, JohnVHarry, JohnVBill, JohnVSarah, 

HarryVBill, HarryVSarah, BillVSarah, JohnVHarryVBill, JohnVHarryVSarah, 

JohnVBillVSarah, HarryVBillVSarah, JohnVHarryVBillVSarah} 

vQ1b = {John, Harry, Bill, JohnVHarry, JohnVBill, JohnVHarryVBill} 

vQ2b = {John, Harry, Bill, Sarah, JohnVHarry, JohnVBill, JohnVSarah, HarryVBill, 

HarryVSarah, BillVSarah, JohnVHarryVBill, JohnVHarryVSarah, JohnVBillVSarah, 

HarryVBillVSarah, JohnVHarryVBillVSarah} 

vσQ1b = JohnVHarryVBill; vσQ2b = JohnVHarryVBillVSarah 

vσ(λx[λx*MAN(x,w0)∧ |x| ≥ 3]∩ λx*COME(x,w0))b = vσ({JohnVHarryVBill})b = 

JohnVHarryVBill 

 

Exh(18) is false because, σQ2 (JohnVHarryVBillVSarah) is a not part of 

JohnVHarryVBill. 

 

We see that exhaustivity predicts correctly that At least 3 men came as an answer to 

who came? does not implicate that exactly 3 men came, but does implicate that only 

men came.  

 

Next we look at cases with no and all. 
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(19) Who came? 

No man  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= no man ~> λP[λxMAN(x,w0)∩P=∅] 

T2 = BE(no man) = λx[λP[λzMAN(z,w0)∩P=∅](λy[y=x])] = 

λx[λzMAN(z,w0)∩(λy[y=x])=∅] = λx[λzMAN(z,w0)∩{x}=∅] = D-λxMAN(x,w0)  

 

exh(19) = [λxMAN(x,w0) ∩ λx*COME(x,w0)=∅] ∧ 

                ∀Q[[λxMAN(x,w0)∩Q=∅]∧Q ⊆ λx*COME(x,w0)] → 

                                                           σQ v σ[(D-λxMAN(x,w0)) ∩λx*COME(x,w0))]] 

 

In words: no man came, and for every subset of comers (closed under sum formation) 

which don’t include singular men, its sum is a part of the comers which are not 

singular men. 

 

Exh(19) simply means that no man came. λxMAN(x,w0) ∩ λx*COME(x,w0) is 

empty, hence (D-λxMAN(x,w0)) ∩λx*COME(x,w0) =  λx*COME(x,w0). The subsets 

Q, range over sets of the form *X for X⊆ATOM, hence, the sum of every such subset 

of comers Q, is a part of the sum of λx*COME(x,w0). This is the correct prediction. 

The answer no man implicates nothing about who didn’t come.  
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(20) Who came? 

No men  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1=  no men ~> λP[λx*MAN(x,w0)∩P=∅] 

T2 = BE(no men) = λx[λP[λz*MAN(z,w0)∩P=∅](λy[y=x])] = 

λx[λz*MAN(z,w0)∩(λy[y=x])=∅] = λx[λz*MAN(z,w0)∩{x}=∅] =                                

D-λx*MAN(x,w0) 

 

exh(20) = [λx*MAN(x,w0) ∩ λx*COME(x,w0) = ∅] ∧ 

                ∀Q[[λx*MAN(x,w0)∩Q=∅]∧Q ⊆ λx*COME(x,w0)] →  

                                                        σQ v σ[( D-λx*MAN(x,w0)) ∩λx*COME(x,w0))]] 

 

In words: no men came, and for every subset of comers (closed under sum formation) 

which don’t include men, its sum is a part of the comers which are not men. 

 

Exh(20) too means that no man came. λx*MAN(x,w0) ∩ λx*COME(x,w0) is empty, 

hence (D-λx*MAN(x,w0)) ∩λx*COME(x,w0) =  λx*COME(x,w0). The subsets Q 

range over sets of the form *X for X⊆ATOM, hence, the sum of every such subset of 

comers Q, is a part of the sum of λx*COME(x,w0). This is the correct prediction. The 

answer no men implicates nothing about who didn’t come.  
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(21) Who came? 

all men  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= all men ~> λPP(V(λx*MAN(x,w0))) 

T2= BE(all men) = λx[λP[P(V(λz*MAN(z,w0)))](λy[y=x])] = 

λx[λy[y=x])(V(λx*MAN(x,w0))) = λx[x=V(λz*MAN(z,w0))] = {V(λx*MAN(x,w0))} 

 

exh(21) = λx*COME(x,w0) (V(λx*MAN(x,w0))) ∧  

                 ∀Q[[Q(V(λx*MAN(x,w0)))∧Q ⊆ λx*COME(x,w0)] →  

                                                         σQ v σ({V(λx*MAN(x,w0))}∩λx*COME(x,w0))] 

 

In words: all men came, and for every subset of comers (closed under sum formation) 

which includes all men, it sum is a part of the men that came. 

 

Exh(21) means that all men came, and no one else. If, besides all men, Mary, a 

woman, came as well, λx*COME(x,w0) would be such a Q that falsifies exh(21)’s 

truth conditions. σ[λx*COME(x,w0)], which would have Mary as one of its parts, 

would not be a part of all the man that came. 

 

Similarly to the case with John and Bill, we get the correct exhaustive interpretation 

of all men came with the sum interpretation of all men. As we’ll see shortly (when we 
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discuss the case of every man in example 23 below), the Boolean interpretation 

λP[λxMAN(x,w0) ⊆ P] will yield the wrong result (and as before, I will assume that 

the undefinedness involved will just make strengthening the Boolean interpretation 

with exh unavailable).   

 

Let us consider now a case of a downward entailing NP with a numeral. 

 

(22) Who came? 

At most two men  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= (at most two men)ARG ~> λP[|V(λx*MAN(x,w0)∩P)| ≤ 2]  

T2 = (at most two men)PRED ~>  λx[*MAN(x) ∧ |x| ≤ 2] 

 

Landman (2004) argues that for downward entailing noun phrases such as at most 2 

men, Partee’s BE cannot derive the predicate interpretation from the argument 

interpretation. My interest here is not to give a theory of predicate interpretations. So,  

I will just follow Landman and assume that the predicate interpretation of at most two 

men is λx[*MAN(x) ∧ |x| ≤ 2]. This, then is a  case where we don’t use BE to derive 

the second element of the pair, and it is the main reason that we used a variable on 

pairs in our formulation of the exhaustivity operator.   
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exh(22) = [|V(λx*MAN(x,w0)∩λx*COME(x,w0))| ≤ 2] ∧  

                ∀Q[[[|V(λx*MAN(x,w0)∩Q)| ≤ 2] ∧ Q ⊆ λx*COME(x,w0)] →  

                                          σQ v σ ([λx[*MAN(x) ∧ |x| ≤ 2] ∩ λx*COME(x,w0))] 

 

In words: the sum of the men that came has at most 2 atomic elements (i.e. at most 2 

men came), and for every subset of comers (closed under sum formation) which 

include at most 2 men, its sum is a part of the comers who are men that have at most 2 

atomic elements. 

 

Exh(22) means that no more than two men came, and no one else. To convince 

ourselves, let us examine 4 cases: no one came, two men came, and no one else, two 

men and one woman came and no one else, and one woman came and no one else. 

 

Case1: No one came 

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry} 

vλx*COME(x,w0)b = ∅ 

vQb = ∅  

vσQb = 0 

vσ([λx[*MAN(x) ∧ |x| ≤ 2] ∩ λx*COME(x,w0))]b =  vσ∅b = 0 
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Exh (22) comes out true in this case. Its first main conjunct is fulfilled, because 

|σ(λx*MAN(x,w0)∩λx*COME(x,w0))|= |σ(∅)| = 0≤ 2. The second conjunct is also 

fulfilled because 0 v 0.   

 

Case2: Two men came, and no one else 

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry} 

vλx*COME(x,w0)b = {John, Harry, JohnVHarry} 

vQ1b = ∅; vQ2b = {John}; vQ3b = {Harry}; vQ4b = {John, Harry, JohnVHarry} 

vσQ1b = 0; vσQ2b = John; vσQ3b = Harry; vσQ4b = JohnVHarry 

vσ([λx[*MAN(x) ∧ |x| ≤ 2] ∩ λx*COME(x,w0))]b  = vσ([{John, Harry, 

JohnVHarry}]∩{John, Harry, JohnVHarryb = vσ({John, Harry, JohnVHarry})b = 

JohnVHarry 

 

Exh (22) comes out true in this case. Its first main conjunct is fulfilled, because 

|σ(λx*MAN(x,w0)∩λx*COME(x,w0))|= |JohnVHarry| = 2≤ 2. The second conjunct is 

also fulfilled because 0, John, Harry and JohnVHarry are all parts of JohnVHarry. 

 

Case3: Two men and one woman came, and no one else 

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry} 

vλxWOMAN(x,w0)b = {Mary} 
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vλx*WOMAN(x,w0)b = {Mary} 

vλx*COME(x,w0)b = {John, Harry, Mary, JohnVHarry, JohnVMary, MaryVHarry, 

JohnVHarryVMary} 

vQ1b = ∅; vQ2b = {John}; vQ3b = {Harry}; vQ4b = {Mary}; vQ5b = {John, Harry, 

JohnVHarry}; vQ6b = {John, Mary, JohnVMary}; vQ7b = {Harry, Mary, HarryVMary}; 

vQ8b = {John, Harry, Mary, JohnVHarry, JohnVMary, MaryVHarry, 

JohnVHarryVMary} 

vσQ1b = 0; vσQ2b = John; vσQ3b = Harry; vσQ4b = Mary; vσQ5b = JohnVHarry; 

vσQ6b = JohnVMary; vσQ7b = MaryVHarry; vσQ8b = JohnVHarryVMary 

vσ ([λx[*MAN(x) ∧ |x| ≤ 2] ∩ λx*COME(x,w0))]b  =  vσ([John, Harry, 

JohnVHarry}]∩{John, Harry, Mary, JohnVHarry, JohnVMary, MaryVHarry, 

JohnVHarryVMary}b = vσ({John, Harry, JohnVHarry})b = JohnVHarry 

 

As desired, Exh (22) comes out as false in this case, because, for example, σQ8 

(JohnVHarryVMary) is not a part of JohnVHarry. 

 

Case4: one woman came, and no one else 

vATOMb = {John, Harry, Mary} 

vλxMAN(x,w0)b = {John, Harry} 

vλx*MAN(x,w0)b = {John, Harry, JohnVHarry} 

vλxWOMAN(x,w0)b = {Mary} 
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vλx*WOMAN(x,w0)b = {Mary} 

vλx*COME(x,w0)b = { Mary} 

vQ1b = ∅; vQ2b = {Mary} 

vσQ1b = 0; vσQ2b = Mary 

vσ([λx[*MAN(x) ∧ |x| ≤ 2] ∩ λx*COME(x,w0))]b  =  vσ([John, 

Harry,JohnVHarry}]∩{Maryb=  vσ∅b = 0 

 

As desired, Exh (22) comes out as false in this case too. Its first main conjunct is 

fulfilled, because, σQ2 (Mary) is not a part of 0. 

 

The last case we look at in this chapter is a case with every.  

 

(23) Who came? 

Every man  

 

P= ABS(who came?) ~> λx*COME(x,w0) 

T1= every man ~> λP[λxMAN(x,w0)⊆P] 

T2= BE(every man) = λx[λP[λzMAN(z,w0)⊆P] (λy[y=x])] = 

λx[λzMAN(z,w0)⊆λy[y=x]] = λx[λzMAN(z,w0)⊆{x}] = λxMAN(x,w0), if 

λxMAN(x,w0) is a singleton set; undefined otherwise 

 

The BE operator does not give us the set we need. As a matter of fact, every man does 

not normally function as a predicate. For example, (24) is infelicitous. 
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(24) #Nirit is every semantics professor at the party. 

 

However, Landman (2003) shows, that everyNPs do sometimes have a predicate 

interpretation. Consider (25): 

 

(25) The press is every person who writes about the news. 

 

Landman assumes that an everyNP can sometimes shift to a collective interpretation 

(everyNP → allNP), and that the collective shifted interpretations might occur as 

predicates. I assume that in our case as well, there is some rescue mechanism that 

shifts the meaning of every man to the meaning of all men, and hence example (23) is 

analyzed in the same way as example (21).  
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Chapter 4 

Exhaustivity on Other Domains 

 

 

In this chapter I generalize the analysis given in the previous chapter so it will  apply 

to other domains besides the domain of singular and plural entities. The plural part-of 

relation and the sigma operator referred to in exh will be generalized to other 

orderings and maximality operators. 

    

 

4.1 Exhaustivity on ordered sets of atoms  

 

The formulation of exh given in the previous chapter (and which is repeated in 1 

below) is especially tailored to sets of pluralities -  as it is, it is not applicable to 

examples such as (2):  

 

(1) Let P and Q be variables ranging over sets of the form *X for some 

X⊆ATOM.  

We associate with noun phrases two interpretations. NPARG of type 

<<e,t>,t> and NPPRED of type <e,t>.  

Let T be a variable of type <<e,t>,t>×<e,t> (a variable over pairs of sets of 

sets and sets).  

If α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then vα1b = T and vα2b = P. 
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exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → σQ v σ( T2∩P)] 

 

(2) How many chairs does John have? 

John has [3] F chairs. 

 

The set of numbers of chairs such that John has that many chairs, is not a set of plural 

entities closed under the sum operation, but it shares some important properties with 

such sets. It is not merely a set of atoms, but an ordered set of atoms, and it always 

has a largest element (the exact number of chairs that John has). We can define a 

maximum operation, max, on sets of numbers. The maximum of two numbers is the 

larger of the two. Hence, any finite set of natural numbers is closed under max - the 

larger numbers of any pair of numbers in some finite set of numbers - is always in the 

set. We can think of the abstract of a single constituent question, and of the abstract of 

a how many? question as a join semilattice.  

 

(3) Let A be a set, let ≤ be a partial order, and let max be a two place operation 

s.t. For any a, b∈A, max(a,b)  is the smallest element s.t. a ≤ max(a,b) and 

b ≤ max(a,b). 

A structure <A, ≤ > is a join semilattice iff for any a, b∈A, max(a,b)∈A  

 

(4) Let A be a set, let  ≤ be a partial order, and let B⊆A, maxB is the unique 

element in B, if there is such a unique element, s.t. for every b∈B,           

b≤ maxB, undefined otherwise. 
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A structure of the form <*P, v >, where P⊆D, and v is the plural part of relation - is a 

join semilattice. We defined, ,V the sum operation using the partial order v, and we 

defined *P as closure under V. Note that if P≠∅, σ(*P) is always defined, because *P 

is closed under sum. A structure of the form <N, ≤ >, where N is a finite set of natural 

numbers, and ≤ is the smaller or equal relation between numbers, is also a join 

semilattice. For any two numbers m, n, max(m,n) is the larger of the two, and it is 

always in N, hence maxN is always defined.   

 

Let us generalize the formulation of exhaustivity given in (1), in such a way that the 

part-of relation and the sigma operator referred to in (1) will come out just as 

instantiations of a more general partial order, and a maximum operator.  

 

(5) Let P, Q be variables ranging over sets, partially ordered by ≤., s.t. <Q, ≤ > 

is a join semilattice.  

We associate with NPs or numerals, two interpretations: an interpretation 

of type <<e,t>,t> and an interpretation of type <e,t>.  

Let T be a variable of type <<e,t>,t>×<e,t> (a variable over pairs of sets of 

sets and sets). If α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then vα1b = T and 

vα2b = P. 

 

exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → maxQ ≤  max(T2∩P)] 

 

Note that in the definition of exh, we do not require <P, ≤ > to be a join semilattice, 

but we look only at subsets of P, Q such that <Q, ≤ > are join semilattices. In the 
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cases of plural NP’s, and numerals, <P, ≤ > itself is a join semilattice, but as will be 

seen later on, this is too strong for the general case.  

 

Now we apply this to the analysis of example (2), which is repeated as (6) below. 

 

(6) How many chairs does John have? 

Three 

 

P = ABS(how many chairs does john have?) ~>  

 λn|(λy[*CHAIR(y,w0) ∧ *HAVE(j,y,w0)])| ≥ n 

 

P is a finite set of natural numbers (we assume, in context, that there are only finitely 

many chairs, or finitely many relevant chairs). The order in exh is the natural order ≤ 

on numbers. <P, ≤ > is a join semilattice; it is easy to see that any subset Q of P is also 

a join semilattice. 

 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 

 

exh(6) = |(λy[*CHAIR(y) ∧*HAVE(j,y)]| ≥ 3 ∧  

               ∀Q[[Q(3)∧Q ⊆ λn|λy(*CHAIR(y) ∧*HAVE(j,y)]| ≥ n] →  

                                  maxQ ≤ max(λn[n=3] ∩λn|λy[*CHAIR(y) ∧*HAVE(j,y)]| ≥ n)] 
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In words: John has at least 3 chairs, and for every subset of numbers of chairs owned 

by John which contains 3, its largest member is smaller than or equal to the largest 

number in the intersection of {3} and the set of numbers of chairs owned by John.  

 

Exh(6) means that John has exactly 3 chairs. The first main conjunct of exh(6) 

ensures that John has at least 3 chairs. I.e. the set of numbers of chairs owned by John 

is {1,2,3,…}. The second main conjunct of exh(6) requires that the largest number in 

every subset of this set is smaller than or equal to 3. Hence, John can not have more 

than 3 chairs. Let us consider 2 cases, a case where John has exactly 3 chairs, and a 

case where John has exactly 4 chairs. 

 

Case 1: John has exactly 3 chairs 

v|λy[*CHAIR(y,w0) ∧*HAVE(j,y,w0)]|b = 3 

vλn|λy(*CHAIR(y,w0) ∧*HAVE(j,y,w0)]| ≥ nb = {1,2,3} 

vQb = {1,2,3}; vmaxQb = 3 

vmax(λn[n=3] ∩λn|λy[*CHAIR(y,w0)∧*HAVE(j,y,w0)]| ≥ n])b =                      

vmax({3}∩{1,2,3})b =3   

 

Since 3 ≤ 3, exh(6) is true. 

 

Case 2: John has exactly 4 chairs 

v|(λy[*CHAIR(y,w0) ∧*HAVE(j,y,w0)]|b = 4 

vλn|λy(*CHAIR(y,w0) ∧*HAVE(j,y,w0)]| ≥ nb = {1,2,3,4} 

vQ1b = {1,2,3}; vQ2b = {1,2,3,4} 
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vmaxQ1b = 3; vmaxQ2b = 4 

vmax(λn[n=3] ∩λn|λy[*CHAIR(y,w0)∧*HAVE(j,y,w0)]| ≥ n])b =                      

vmax({3}∩{1,2,3,4}b =3   

 

Since 4 is not smaller than or equal to 3, exh(6) is false. 

 

(7) How many chairs does John have? 

At least three 

 

P = ABS(how many chairs does john have?) ~>  

       λn|(λy[*CHAIR(y,w0) ∧ *HAVE(j,y,w0)])| ≥ n 

T1 = at least three ~>  λP∃n[n ≥ 3 ∧ P(n)] 

T2 = at least three ~> λn[n≥3] 

 

exh(7) = |λy[*CHAIR(y,w0) ∧*HAVE(j,y,w0)]| ≥ 3 ∧  

               ∀Q[[∃n[n ≥3∧Q(n)])∧Q ⊆ λn|λy (*CHAIR(y,w0)∧*HAVE(j,y,w0)]| ≥ n] →  

                          maxQ ≤ max(λn[n≥3]∩λn|λy[*CHAIR(y,w0)∧*HAVE(j,y,w0)]| ≥ n)] 

 

In words: John has at least 3 chairs, and for every subset of numbers of chairs owned 

by John which contains a number ≥ 3, its largest member is smaller than or equal to 

the largest number in the intersection between {3, 4, 5…} and the set of numbers of  

chairs owned by John.  
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Exh(7) means that John has at least 3 chairs. Let us check exh(7)’s truth condition in a 

state of affairs where John has exactly 4 chairs: 

 

v|λy[*CHAIR(y,w0) ∧*HAVE(j,y,w0)]|b = 4 

vλn|λy(*CHAIR(y,w0) ∧*HAVE(j,y,w0)]| ≥ nb = {1,2,3,4} 

vQ1b = {1,2,3}; vQ2b = {1,2,3,4} 

vmaxQ1b = 3; vmaxQ2b = 4 

vmax(λn[n≥3] ∩λn|λy[*CHAIR(y,w0)∧*HAVE(j,y,w0)]| ≥ n)]b =                       

vmax({3,4,5…}∩{1,2,3,4}b = vmax({3,4}b =  4 

 

Since both 3 and 4 are smaller than or equal to 4, exh(7) is true. 

 

Our reformulation of the exhaustivity operator helps us also in the following case: 

 

(8) A: Who received you? 

B: the assistant headmaster received me. 

 

Bonomi and Casalegno (1993) observe that the reply in (9) below is ambiguous in the 

following way:  

   

(9) A: Have you seen the headmaster? 

B: No, only the assistant headmaster received me. 
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On one reading, exactly one person received me, and that person was the assistant 

headmaster. On the second reading, the assistant headmaster was the most important 

person who received me. It is the latter reading that interests us here. 

 

Like the word only, the exhaustiveness operator has a different effect on non-ordered 

and ordered sets of alternatives. Also in example (8),  we can distinguish between two 

cases. Suppose the set of the potential receivers consists of the headmaster, the 

assistant headmaster, secretary 1 and secretary 2. The members of this set can be 

naturally ordered on a scale of rank. I think that in interpreting B’s answer we have a 

choice whether to use or ignore this ordering. If we ignore this ordering, we’ll get the 

interpretation that the assistant headmaster received me, and no one else did. If we 

acknowledge the ordering, we’ll get the interpretation that the assistant is the person 

with the highest rank who received me. 

 

The first reading, where the rank ordering is ignored, works exactly the same way as 

the cases which were discussed in chapter 3. We use the plurality structure, and the 

formulation of exh in (5) reduces to the formulation in (1). Exh(8) in this case  

requires that the assistant headmaster received me, and that the members of every 

subset of plural receivers (closed under sum) which includes the assistant headmaster, 

are part of the individuals which are the assistant headmaster and come. Hence, the 

assistant headmaster received me, and no one else.  

 

The second reading can be treated on a par with example (6). Let us restrict ourselves 

to C⊆ATOM, such that ranking is a linear order on C – for any two individuals, a, b, 

either a is ranked lower or equal to b, or higher than b. We can define the max(a,b) as 
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the individual which is ranked higher, if there is such an individual. For two 

individuals with the same rank, max is undefined, hence a set of ranked individuals is 

not always closed under max. Exh requires that we look at all subsets of the set of 

receivers which are closed under max, and which include the headmaster. The 

assistant headmaster has to be the highest ranking individual in all these sets.  

 

Now it is clear why we want the subsets of receivers Q to be closed under max. Let us 

look at some Q which does not include the headmaster, but includes the assistant 

headmaster, and an individual with the same rank, lets say, the deputy headmaster. 

That Q would not have a unique maximal element, and maxQ would be undefined. 

But (32), on its ‘rank’ reading, is intuitively true if both the assistant headmaster and 

the deputy headmaster received me. Closure under max leaves only these subsets Q 

which are strictly ordered by rank.    

 

(10) Who received you? 

[The assistant headmaster]F received me 

 

P = ABS(who received you?) ~> λx[C(x) ∧ RECEIVED(x,i,w0)]; C is a background 

set of minimally two individuals ordered by rank. Thus, the order in exh, ≤, is the rank 

relation.  

 

T1 = the assistant headmaster ~>   λP[P(σ(λxAH(x,w0))] 

T2 = the assistant headmaster~> λx[x=σ (λxAH(x,w0))] 
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exh(10) = [RECEIVED(σ(λxAH(x,w0)),i,w0) ∧ C(σ(λxAH(x,w0))] ∧  

                 ∀Q[[Q(σ(λxAH(x,w0)))∧Q ⊆ λx[C(x) ∧ RECEIVED(x,i,w0)]] → 

                        maxQ ≤ max(λx[x=σ(λxAH(x,w0))]∩ λx[C(x) ∧ RECEIVED(x,i,w0)]] 

 

Since the assistant headmaster received me, and since (s)he is a member of C,                                   

max(λx[x=σ(λxAH(x,w0))]∩λx[C(x) ∧ RECEIVED(x,i,w0)]] = σ(λxAH(x, w0), and 

exh(10) can be reduced as follows:  

 

exh(10) = [RECEIVED(σ(λxAH(x,w0)),i,w0) ∧ C(σ(λxAH(x,w0))] ∧  

                 ∀Q[[Q(σ(λxAH(x,w0)))∧Q ⊆ λx[C(x) ∧ RECEIVED(x,i,w0)]] → 

                                                                                                   maxQ ≤ σ(λxAH(x, w0) 

 

In words: the assistant headmaster, who is a member of some set C, consisting of 

minimally two individuals ordered by rank, received me, and for every subset Q of 

individuals in C (s.t. members in Q are strictly ranked) who received me which 

includes the assistant headmaster, its highest ranking member is ranked lower than or 

equal to the assistant headmaster. 

 

Exh(10) means that I was received by the assistant headmaster, who was the highest 

ranking individual in C who received me. Let us consider two cases: A case where the 

secretary, the assistant headmaster and the deputy headmaster received me, but not the 

headmaster, and a case where the assistant headmaster and the headmaster received 

me. 
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Case 1: The secretary, the assistant headmaster and the deputy headmaster received 

me, and no one else 

VCb = {the secretary, the assistant headmaster, the deputy headmaster, the headmaster} 

v≤ b = {the secretary ≤ the assistant headmaster, the deputy headmaster ≤ the 

headmaster} 

vλxRECEIVED(x,i,w0))b = {the secretary, the assistant headmaster, the deputy 

headmaster}  

vQ1b = {the assistant headmaster}; vQ2b = {the secretary, the assistant headmaster} 

vmax(Q1)b = the assistant headmaster; vmaxQ2b = the assistant headmaster 

 

Exh(10) is true in this model: the assistant headmaster ∈ {the secretary, the assistant 

h., the deputy h.}, and the assistant headmaster ≤ the assistant headmaster. 

 

Case 2: The assistant headmaster and the headmaster received me, and no one else 

VCb = {the secretary, the assistant headmaster, the deputy headmaster, the headmaster} 

v≤ b = {the secretary ≤ the assistant headmaster, the deputy headmaster ≤ the 

headmaster} 

vλxRECEIVED(x,i,w0))b = {the assistant headmaster, the headmaster}  

vQ1b = {the assistant headmaster}; vQ2b = {the assistant headmaster, the headmaster} 

vmax(Q1)b = the assistant headmaster; vmaxQ2b = the headmaster 

 

Exh(10) is false in this model: the headmaster > the assistant headmaster 

 

For a different order, let us look at a case with a transitive verb focus: 
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(11) What did you do with the letter? 

I [typed]F it 

 

(11) can be interpreted roughly as follows: The ‘maximal’ thing I did with the letter 

was type it (I might have formulated it, but I didn’t mail it). The interpretation refers 

to some process of handling outgoing mail: first you formulate, then you type and 

then you mail. I’ll analyze this example much in the same way I analyzed the ‘rank’ 

reading of (8), but in order for the exhaustivity operator to work in this case as well, 

I’ll give a formulation for exh to allow it operate on properties and relations.  

 

(12) Let C be a background set of properties (or relations) consisting minimally 

of 2 members, ordered by a partial order, ≤.  

Let P, Q be variables ranging over sets of properties (or relations), 

partially ordered by ≤., s.t. <Q, ≤ > is a join semilattice.  

We associate with VPs (or transitive verbs) two interpretations. An 

interpretation of the type of properties (or relations), and an interpretation 

of the type of sets of properties (or relations).   

Let T be a variable over pairs of properties (or relations) and sets of 

properties (or relations). 

 If α is an expression of the type of pairs of properties (or relations) and 

sets of properties (or relations),  

and  vαb = <T,P >, then vα1b = T and vα2b = P. 

 

exh = λTλP[APPLY(T1,P)∧∀Q[[APPLY(T1,Q)∧Q ⊆ P] → maxQ ≤   

        max(T2∩P)] 
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Explanatory note: In the domain of plural individuals we have <T1, T2>, where T1 is 

a generalized quantifier of plural individuals and T2 is a set of plural individuals. 

P and Q range over sets of plural individuals. In the domain of properties we have 

<T1, T2>, where T1 is a property and T2 is a set of properties. P and Q range over 

sets of properties. So I have reduced the general form such that I didn’t introduce 

here a generalized quantifier over properties, but directly a property. This is for 

simplicity. The format can be generalized easily. 

 

(13) What did you do with the letter? 

I [typed]F it 

 

P = ABS(what did you do with the letter?) ~> λP[P⊆C ∧ P(i, σ(LETTER))],  

where P is a variable of the type of sets of relations.  

 

C is an ordered background set of relations. In this case, C contains things one does 

with letters in the process of handling outgoing mail, such as formulate, handwrite, 

type, print, mail, file a copy of etc... C is partially ordered as follows: Let P, Q∈C, 

PÖQ means something like “P is at least as early as Q in the process”. For example, 

formulateÖ typeÖ mailÖ file a copy of . The order ≤ in exh, will be this order, Ö. 

 

C is not closed under max (for example the max of type and handwrite is not defined, 

because these are not ranked relative to each other). As in the case of ranked 

individuals, subsets of C which are closed under max, are those which are strictly 

ordered.  
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T1 = type ~>   TYPE 

T2 = type ~> λP[P=TYPE] 

 

APPLY(T1,P) = P(T1) = λP[P⊆C ∧ P(i, σ(LETTER)](TYPE) =                         

TYPE(i, σ(LETTER)) ∧TYPE ⊆ C 

T2∩P = λP[P=TYPE] ∩λP[P⊆C ∧ P(i, σ(LETTER)]. Since TYPE is in the set 

λP[P⊆C ∧ P(i, σ(LETTER)],  T2∩P = {TYPE}  

max(T2∩P)] = max({TYPE}) = TYPE 

 

exh(13) = TYPE(i, σ(LETTER)) ∧TYPE ⊆ C ∧ 

                 ∀Q[[Q(TYPE)∧Q ⊆ λP[P⊆C ∧ P(i, σ(LETTER)] → maxQ Ö TYPE] 

 

In words: I typed the letter (and type is a member of a partially ordered set of 

relations, C, consisting of minimally two relations), and for every subset Q of 

relations in C between me and the letter, which includes type such that Q is strictly 

ordered - its maximal relation is at least as early in the process as type. 

 

Exh(13) means that I typed the letter, and this was the most “advanced” thing out of 

the things in C that I did with it. Let us consider two cases: A case where I formulated 

and typed the letter, and didn’t mail it, and a case where I typed and mailed the letter. 
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Case 1: I formulated and typed but didn’t mail the letter 

vCb ={FORMULATE, TYPE, HANDWRITE, MAIL} 

v≤ b = {FORMULATE Ö FORMULATE; FORMULATE Ö TYPE; FORMULATE Ö 

HANDWRITE; FORMULATE Ö MAIL, TYPE Ö TYPE, TYPE Ö MAIL, 

HANDWRITE Ö HANDWRITE; HANDWRITE Ö MAIL; MAIL Ö MAIL} 

vλP[P(i, σ(LETTER)]b = {FORMULATE, TYPE}  

vQ1b = {TYPE}; vQ2b = {FORMULATE,TYPE} 

vmax(Q1)b = TYPE; vmaxQ2b = TYPE 

 

Exh(13) is true in this model. TYPE Ö TYPE 

 

Case 2: I typed and mailed the letter 

vCb ={FORMULATE, TYPE, HANDWRITE, MAIL} 

v≤ b = {FORMULATE Ö FORMULATE; FORMULATE Ö TYPE; FORMULATE Ö 

HANDWRITE; FORMULATE Ö MAIL, TYPE Ö TYPE, TYPE Ö MAIL, 

HANDWRITE Ö HANDWRITE; HANDWRITE Ö MAIL; MAIL Ö MAIL} 

vλP[P(i, σ(LETTER)]b = {TYPE, MAIL}  

vQ1b = {TYPE}; vQ2b = {TYPE, MAIL} 

vmax(Q1)b = TYPE; vmaxQ2b = MAIL 

 

Exh(13) is false in this model. MAIL Ö TYPE 

 

 

 

 132



4.2 Exhaustivity on quasi-plural domains  

 

Consider the following example with a VP focus: 

  

(14) What did you do last night? 

I [saw a movie]F 

 

Contrary to (13), there is no contextually salient ordering that we can use here in exh. 

Nevertheless (14) has an exhaustive interpretation, roughly described as follows: the 

only “interesting” thing that I did last night was see a movie (I didn’t go to a party, I 

didn’t write my dissertation etc…). Let us assume a background set of alternatives 

which includes the following properties: staying home, going out, going to the 

movies, going out for dinner, reading a book, and writing one’s dissertation. It seems 

that the sum of every two properties which do not contradict each other, or typically 

clash with one another in some way, is also considered an alternative (for example 

going to the movies and dining out). This is a kind of closure on the set of 

alternatives. I assume that if the background set of alternatives is not ordered by some 

contextual ranking, we always have the possibility to order it by a part-of relation . P v 

Q, in this case, means: if you have Q, then you have P. 

 

Consider the following background set of properties: C = {stay home, go out, stay 

home and write, stay home and read, stay home and see a movie, go out and see a 

movie, go out to a party, go out for dinner}. C is not closed under sum formation. 

However, in some intuitive way, it seems to be a mixture of two background sets – 

We can build two different join semilattices out of it -  the “algebra of staying home” 
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whose atoms are: write, read, see a movie, and “the algebra of going out” whose 

atoms are: see a movie, be at a party, eat dinner. Each of these two sets of atoms can 

be closed under sum formation, and provide a suitable construction for exh.   

 

Now back to the example.  

  

(15) What did you do (last night)? 

I [saw a movie]F 

 

P = ABS(what did you do?) ~> λP[(P⊆C ∧ P(i)], where P is a variable of the type of 

sets of properties, and C is a background set of properties, closed under sum 

formation.  

 

≤ in exh is the part of relation between properties, v.  

 

T1 = saw a movie ~>   SM 

T2 = saw a movie ~> λP[P= SM] 

 

APPLY(T1,P) = P(T1) = λP[P⊆C1 ∧ P(i)](SM) = SM(i) ∧ (SM ⊆ C) 

T2∩P = λP[P= SM] ∩ λP[P⊆C ∧ P(i)]. Since SM is in the set λP[P⊆C ∧ P(i)],        

T2∩P = {SM}  

max(T2∩P)] = max({SM}) = SM 

 

exh(15) = SM(i) ∧ (SM ⊆ C) ∧∀Q[[Q(SM)∧Q ⊆ λP[P⊆C ∧ P(i)] → maxQ v SM] 
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In words: I saw a movie (and seeing a movie is a member of a set of properties C, 

consisting of minimally two elements and closed under sum formation), and for every 

subset of properties in C (closed under sum formation), which I have, and which 

includes seeing a movie, its maximal property is a part of seeing a movie. 

 

Exh(15) means that out of the properties in C, I only have seeing a movie and the 

properties which are part of it.  

 

Let us assume first that we’re in the ‘algebra of going out’, the atoms of C are: see a 

movie, eat dinner.  Let us consider 2 cases, a case were (I went out and) saw a movie, 

but didn’t have dinner, and a case where (I went out and) saw a movie, and ate dinner.  

 

Case 1: I went out: I saw a movie and didn’t have dinner 

vCb ={see a movie, have dinner, see a movie&have dinner} 

vλP[P(i)] b = {see a movie}  

vQb = {see a movie} 

vmax(Q)b =  see a movie  

 

Exh(15) is true in this model. see a movie v see a movie 

 

Case 2: I went out: I saw a movie and had dinner 

vCb ={see a movie, have dinner, see a movie&have dinner} 

vλP[P(i)] b = ={see a movie, have dinner} 

vQ1b = {see a movie}, vQ2b = {see a movie, have dinner, see a movie&have dinner} 
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vmax(Q1)b = see a movie; vmax(Q2)b = see a movie&have dinner 

 

Exh(15) is false in this model. see a movie&have dinner v saw a movie 

 

So, in the ‘algebra of going out’ the conversation implicates that I didn’t dine out.  

In the ‘algebra of staying in’, assuming the atoms of C are: see a movie, read a book,  

the implicature would be that I didn’t read a book. 

 

The case of a determiner focus can be analyzed in a similar way. 

 

(16) A: How many men come? 

B: [Most]F men come. 

 

The abstract of the question, how many men come?, was analyzed as a set of 

cardinalities – the set of numbers such that at least that many men come (see 

examples 6 and 7 in section 4.1). However, the short answer in this case, most, is not a 

set of sets of cardinalities (as we assumed for numerical expressions), but a relation 

between cardinalities. Most men come means that the number of men who come is 

larger than the number of men who don’t come. So, B’s reply really answers the 

following question: what is the set of relations that hold between the number of men 

who come and the number of men who don’t come? For simplicity, I’ll assume that 

A’s question can be interpreted in that way.  

 

I assume that natural language determiners are relations between cardinalities:  
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(17) Let P, Q ⊆ D, let n, m be numbers s.t. m = |P∩Q| and n = |P-Q| 

all(m,n) = λmλn[n=0] 

most(m,n) = λmλn[m > n] 

many(m,n) = λmλn[m > p·n], where 0<p≤1  

some(m,n) = λmλn[m≠0] 

no(m,n) = λmλn[m=0] 

few(m,n) = λmλn[m < p·n], where 0<p≤1 

not all(m,n) = λmλn[n≠0] 

 

We begin by defining a part-of relation between determiners:   

 

(18) Let R1, R2 be relations between cardinalities, and let Let P, Q ⊆ D, R1 v R2 

(R1 is a part of R2) iff for every cardinality m = |P∩Q| s.t P≠∅ and             

n = |P-Q|, if R2(m,n), then R1(m,n).   

 

(19) Let R be a set of relations, max(R) is the relation in R (if it exists), such 

that for every R in R: R v max(R) 

 

For example, some is a part of most (Most P’s are Q’s entails some P’s are Q’s), and 

of many. Many is a part of most (many has an interpretation such that most P’s are 

Q’s entails many P’s are Q’s). Few is a part of no (no P’s are Q’s entails that few P’s 

are Q’s). Note that some, many, and most are parts of all (all P’s are Q’s entails that 

some, many or most P’s are Q’s, if there are P’s), and similarly, not all is a part of no. 
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As with properties, sets of determines aren’t generally closed under sum formation – 

there is no sum of some and no, there is no sum of all and not all. Hence a 

background set of determiners doesn’t always provide us with a suitable construction 

for exh. However, there is a general way to split the set of determiners into two 

subsets such that these subsets would be closed under sum. So, where in the case of 

properties we had an “algebra of staying in”, and an “algebra of going out”, here we 

have an algebra of  “positive” determiners, and an algebra of “negative” ones.  

 

Each of the sets {some, many, most, all} and {not every, few, no} is closed under sum 

formation, and is “perfect” as background sets in the definition of exh. As a matter of 

fact, these are exactly the Horn scales for determiners.   

 

Remember that one of the problems I brought up for Horn’s theory is the stipulative 

nature of the scale, and in particular of the restriction to elements that are all 

“positive” or all “negative”. In an approach like Horn’s that restriction ought to derive 

from the pragmatic theory, but it is not clear at all that it does. In the present theory, 

the separation into “positive” and “negative” scales is derived from the semantics of 

exhaustivization: exh requires the domain it operates on to be ordered as a join 

semilattice. Domains with both “positive” and “negative” determiners cannot satisfy 

this requirement, while homogenously positive or homogenously negative domains 

can. Here, exhaustivization itself brings about the natural partition of the domain of 

determiners into the Horn scales, and hence derives the scales. 

 

Thus, the present theory actually explains why we find the particular Horn scales we 

find, when we find them. 
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Lets us consider a few examples, 

           

(20) How many men come? 

[Some]F men come. 

 

P = ABS(how many men come?) ~> λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)], 

where P is a variable of the type of sets of relations between cardinalities, and C is a 

background set of relations between cardinalities, which contains at least two 

members, and which is closed under sum.  

 

≤ in exh is the part-of relation between relations between cardinalities, v. P stands for 

the set of relations that hold between the number of men who come and the number of 

men who don’t come.  

 

T1 = some ~> λmλn[m≠0]  

T2 = some ~> λP[P = λmλn[m≠0]]  

 

APPLY(T1,P) = P(T1) = (λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)])(λmλn[m≠0]) 

= |MAN∩COME| ≠0 ∧ λmλn[m≠0]  ⊆ C 

 

(T2∩P) = λP[P⊆C ∧ P(|MAN∩COME|, |MAN-COME|)] ∩ λP[P = λmλn[m≠0]], 

since λmλn[m≠0]  is in the set λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)], T2∩P = 

{λmλn[m≠0] } and max(T2∩P) = λmλn[m≠0] 
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exh(20) = |MAN∩COME| ≠0 ∧ λmλn[m≠0]  ⊆ C  ∧  

               ∀Q[Q(λmλn[m≠0]) ∧Q ⊆ λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)]] → 

                                                                                                        maxQ v λmλn[m≠0]] 

 

In words: Some men come and some is in a set of relations, C, consisting minimally 

of two elements, and for every subset of relations in C (closed under sum formation) 

between the cardinalities of men who come and men who don’t come, which includes 

some, its maximal element is part of some. 

 

If the background set of relations C is {some, most, all), then exh(20) means that 

some, but not most or all men come. Let us check its truth conditions in three cases, a 

case where 4 out of 4 men come, a case where 3 out 4 men come, and a case where 2 

out of 4 men come. 

 

Case 1: all men come 

vCb ={SOME v MOST v ALL} 

|MAN∩COME| = 4; |MAN - COME| = 0  

vλP[P⊆C∧P(|MAN∩COME|, |MAN∩COME|)]b = {SOME, MOST, ALL}            

vQ1b = {SOME}; vQ2b = {SOME, MOST}, vQ3b = {SOME, MOST, ALL} 

vmax(Q1)b = SOME; vmaxQ2b = MOST, vmaxQ3b = ALL 

 

Exh(20) is false in this model. MOST,ALL v SOME. 
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Case 2: most but not all men come 

vCb ={SOME v MOST v ALL} 

|MAN∩COME| = 3; |MAN - COME| = 1 

vλP[P⊆C∧P(|MAN∩COME|, |MAN∩COME|)]b = {SOME, MOST} 

vQ1b = {SOME}; vQ2b = {SOME, MOST},  

vmax(Q1)b = SOME; vmaxQ2b = MOST 

 

Exh(20) is false in this model. MOST v  SOME. 

 

Case 3: some but not most men come 

vCb ={SOME v MOST v ALL} 

|MAN∩COME| = 2; |MAN - COME| = 2 

vλP[P⊆C∧P(|MAN∩COME|, |MAN∩COME|)]b = {SOME} 

vQb = {SOME}} 

vmax(Q)b = SOME 

 

Exh(20) is true in this model. SOME v  SOME. 

 

It is important to note that the background set C is crucial for calculating the 

implicatures in this case. If C={some, all} the only implicature is that not all men 

come, if C={some, most, all} the implicatures are that not all men come, and that not 

most men come. I believe that the dependency on the background set, C, captures a 

real fact concerning the implicatures of [Some]F men come. Some of the implicatures 

are especially ‘fuzzy’. It is not clear whether the sentence really implicates that it is 

 141



not the case that most men come, or that it is not the case that many men come, etc… 

If the context hints that many is in C, such as in (21) below, the implicature not many 

is more robust: 

 

(21) –I heard that many students failed the exam 

-[some]F failed. 

 

The implicature not all is quite robust. Even if all itself is not in C, the implicatures 

not most or not many entail the implicature not all.   

 

A nice result of my analysis is that the implicatures of [some]F men came are not the 

same as the implicatures of [one or more]F men came. The exhaustivization of [one 

or more]F men came means simply that at least one man came (the computation is the 

same as in example 7). The crucial difference between the cases is the interpretations 

of the question (How many men came?), and the nature of the ordering we used in 

exh. In the case of one or more the question abstract is interpreted as a set of numbers, 

and thus one or more is interpreted as a generalized quantifier over numbers - λP∃n[n 

≥ 1 ∧ P(n)]. The ordering was the natural ordering of numbers. In the case of some, 

we interpreted the question abstract as a set of relations. The natural order on numbers 

does easily provide a suitable construction for exh. In the case of determiners, we had 

to split the domain into two in order to get the right construction.  

 

A question that presents itself now is whether we have the option to interpret 

numerals as determiners. Sets of numbers are just an instance of relations between 
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numbers, and as a matter of fact, out of the set of determiners most, many and few are 

the only real relations between numerals. Let us consider (22) below: 

 

(22) A: [At least ten]F men came 

B: [Some]F men came 

 

What does B implicate? I think that (22) could be understood in two ways. Either B 

implicates that she does not know how many men came or that she knows that less 

than 10 men came. B’s claim, without exhaustivization, is that at least one man came. 

Thus, if we do not interpret B’s utterance exhaustively, it does not increase nor 

contradict the information conveyed in A’s utterance. The only reason for B to do so, 

I think, is that B doesn’t agree with A, but also doesn’t know how many men came. A 

second way to understand B’s utterance is to assume that B is including the 

determiner interpretation of at least ten in the background set C of relations. B is 

treating A’s utterance as a possible answer to what is the relation that holds between 

the number of men who come and the number of men who don’t come?, and contrasts 

her answer to that question, some, with A’s answer at least 10. The exhaustivization 

of B’s utterance relative to a set that contains the relation at least 10, entails that it is 

not the case that at least 10 men came. Thus, if we assume this is the case, B’s 

utterance implicates that less than 10 men came. I think this is a special case, where 

the set C contains only the two determiners some and at least 10. In this case, we even 

don’t implicate not all. 
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I end this section by showing that relative to a set of alternatives {not every, no}, the 

sentence [Not all]F men come as an answer to How many men come? implicates that 

some men come. 

 

(23) How many men come? 

[Not all]F men come. 

 

P = ABS(how many men come?) ~> λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)], 

where P is a variable of the type of sets of relations between cardinalities, and C is a 

background set of relations between cardinalities, which contains at least two 

members, and which is closed under some.  

 

≤ in exh is the part-of relation between relations between cardinalities, v. P stands for 

the set of relations that hold between the number of men who come and the number of 

men who don’t come - I assume that P is closed under sum formation.  

 

T1 = not all ~> λmλn[n≠0]  

T2 = not all ~> λP[P = λmλn[n≠0]]  

 

APPLY(T1,P) = P(T1) = (λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)])(λmλn[n≠0]) 

= |MAN-COME| ≠0 ∧ λmλn[n≠0]  ⊆C 

(T2∩P) = λP[P⊆C ∧ P(|MAN∩COME|, |MAN-COME|)] ∩ λP[P = λmλn[n≠0]], 

since λmλn[n≠0]  is in the set λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)], T2∩P = 

{λmλn[n≠0] } and max(T2∩P) = λmλn[n≠0] 
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exh(23) = |MAN-COME| ≠0 ∧ λmλn[n≠0]  ⊆ C ∧ 

                 ∀Q[Q(λmλn[n≠0])∧Q ⊆ λP[P⊆C∧P(|MAN∩COME|, |MAN-COME|)]] → 

                                                                                                         maxQ v λmλn[n≠0]] 

 

In words: Some men don’t come, and not all is in a set of relations, C, consisting 

minimally of two elements, and for every subset of relations in C (closed under sum 

formation) between the cardinalities of men who come and men who don’t come, 

which includes not all, its maximal element is part of not all. 

 

If the background set of relations C is {not all, no), then exh(23) means that some, but 

not all men come. Let us check its truth conditions in two cases, a case where 0 out of 

4 men come, a case where 2 out 4 men come. 

 

Case 1: no men come 

vCb ={NOT ALL v NO} 

|MAN∩COME| = 0; |MAN - COME| = 4  

vλP[P⊆C∧P(|MAN∩COME|, |MAN∩COME|)]b = {NOT ALL, NO}             

vQ1b = {NOT ALL}; vQ2b = {NOT ALL, NO} 

vmax(Q1)b = NOT ALL; vmaxQ2b = NO 

 

Exh(23) is false in this model. NO v NOT ALL. 
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Case 2: some but not all men come 

vCb ={NOT ALL v NO} 

|MAN∩COME| = 2; |MAN - COME| = 2  

vλP[P⊆C∧P(|MAN∩COME|, |MAN∩COME|)]b = {NOT ALL}                   

vQb = {NOT ALL} 

vmax(Q)b = NOT ALL 

 

Exh(23) is true in this model. NOT ALL v  NOT ALL. 

 

Summing up so far, the exhaustivity operator makes use of join semilattices. I.e. 

ordered sets, closed under a maximality operator. The domain of plural and individual 

entities, provides such constructions. So do finite sets of numbers, and any strictly 

totally ranked set. Exh can operate on other domains as well, with the assumption that 

a suitable construct can be built in context. The case of determiners is special in that 

there are few of them, and that there is an easy way to group them into two suitable 

sets.   

 

The careful reader must have noticed that I haven’t dealt yet with yes/no questions. 

I’ll discuss them in chapter 6. In the next chapter I show how the exhaustivity analysis 

of scalar implicatures explains in a straightforward way their ‘projection’ behavior.  
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Chapter 5 

The Projection of Scalar Implicatures 

 

 

In this chapter I discuss the phenomenon of scalar implicature ‘projection’. Section 

5.1 deals with ‘embedded’ scalar implicatures, i.e. scalar implicatures that show up in 

the scope of embedding operators, and section 5.2, with the suspension of scalar 

implicatures in the scope of downward entailing (DE) operators. I briefly present 

previous analyses of these phenomena (Landman (2000) and Chierchia (ms)), and 

discuss how these cases are dealt within the exhaustivity theory of scalar implicatures, 

which was introduced in the previous chapter. Section 5.3 deals with other 

environments in which scalar implicatures are ‘suspended’ or ‘cancelled’.   

 

 

5.1 Embedded scalar implicatures 

 

One of the main problems of Horn’s analyses of scalar implicatures is that it doesn’t 

predict the correct facts about implicatures that arise under the scope of embedding 

operators (see also discussion in chapter 1, section 1.7). Landman (2000) and 

Chierchia (ms) discuss, among others, examples such as (1)-(3): 

 

(1) Bill knows that there were 3 boys at the party 

(2) Every boy kissed 3 girls 

(3) Some boy kissed 3 girls 
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In many contexts, sentences (1)-(3) are understood as conveying (4)-(6) respectively. 

These interpretations cannot be inferred on the basis of the implicatures that Horn 

predicts for (1)-(3), given in (7)-(9).  

 

(4) Bill knows that there were exactly 3 boys at the party 

(5) Every boy kissed exactly 3 girls  

(6) Some boy kissed exactly 3 girls 

 

(7) It is not the case that Bill knows that there were 4 boys at the party 

(8) It is not the case that every boy kissed 4 girls 

(9) It is not the case that some boy kissed 4 girls = No boy kissed 4 girls 

 

Sentence (1) can be understood as conveying that Bill knows that there were exactly 3 

boys at the party. The implicature that Horn predicts for this sentence is much too 

weak, it is compatible with Bill not knowing how many boys were at the party. 

Sentence (2) has an interpretation that every boy kissed exactly 3 girls. Again, the 

implicature derived by Horn is too weak. (8) is compatible with some boys kissing 

more than 3 girls. On the other hand, the implicature that Horn predicts for (3) is too 

strong. (3) is typically understood as conveying (6), (9) is much too strong. 

 

One of the problems is that on Horn’s analysis of scalar implicatures, negation has to 

take scope over the whole sentence, and thus, in the examples discussed above, it ends 

up in the wrong place. If we allow implicatures to be computed locally, we get the 

right results for (1) and (2). Sentences (1)-(2) would implicate (10)-(11) respectively. 
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(10)-(11) are the right implicatures, in the sense that together with the meanings they 

entail the desired interpretations. Note that this isn’t enough for (3). The right 

implicature of (3) is (12’) , and not (12). Here we have an additional problem – the 

anaphoric reference of the implicature to the meaning. 

 

(10) Bill knows that it is not the case that there were 4 boys at the party 

(11) For every boy, it is not the case that he kissed 4 girls  

(12) For some boy, it is not the case that he kissed 4 girls 

(12’)  For that boy (i.e. the one mentioned in example 3) , it is not the case  

that he kissed 4 girls. 

 

Both Landman (2000) and Chierchia (ms) suggest that implicatures such as the above 

are computed by the grammar. Landman deals specifically only with the case of the 

‘exactly’ implicature of numbers, while Chierchia restricts himself to ‘default’ or 

‘generalized conversational implicatures’, implicatures which usually arise, unless 

cancelled explicitly (such as the exclusive interpretation of or and the not all 

interpretation of some).   

 

Landman’s general idea is that a scalar implicature is introduced locally, and inherits 

up following the semantic composition of the sentence. For example in the case of (2), 

which is repeated in (13) below, the implicature is introduced at the level of the VP 

interpretation, kissed 3 girls. The implicature of the VP is (14): 

 

(13) Every boy kissed 3 girls 

(14) {x: x kissed no more than 3 girls} 
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In the process of inheriting up, we apply (14) to the interpretation of  every boy, and 

we get (15): 

 

(15) Every boy kissed no more than 3 girls 

 

Chierchia (ms) has a similar theory in which grammar computes two semantic values 

for each expression: a ‘plain’ semantic value (the meaning) and a ‘strengthened’ 

semantic value (the meaning strengthened by the scalar implicature). Chierchia, too, 

assumes that implicatures are introduced locally in ‘the scope domain’ of the scalar 

element. I’ll show how Chierchia’s theory works using example (16) below.  

 

(16) Some boy kissed 3 girls 

 

We work bottom up in the syntactic tree. The first scalar element which we encounter 

is 3. The scope domain of 3 is the VP kissed 3 girls. The first step in calculating 

strengthened semantic values is specifying the set of relevant alternatives for our 

expression. This is done by substituting the scalar element in the expression with all 

elements in the Horn scales which our scalar element is part of. The set of alternatives 

for kissed 3 girls is{kissed 1 girl, kissed 2 girls, kissed 3 girls, kissed 4 girls, kissed 5 

girls…}. Out of this set, we pick up the one which is immediately stronger than our 

expression. In this case it is kissed 4 girls. The strengthened semantic value of kissed 

3 girls is kissed 3 girls and not kissed 4 girls.  
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Now we move up the tree to the scalar element some. Its scope domain is some boy 

kissed 3 girls. Chierchia assumes that when specifying the alternatives for an 

expression that contains two scalar elements, one embedded in the scope of the other, 

we ignore the alternatives for the embedded element (these were already taken care of 

before). The alternatives for some boy kissed 3 girls are {some boy kissed 3 girls, 

most boys kissed 3 girls, every boy kissed 3 girls}. The one which is immediately 

stronger than our target is most boys kissed 3 girls. The contribution of some to the 

strengthened semantic value of the sentence would be some boy kissed 3 girls, and not 

most boys kissed 3 girls. We get the strengthened semantic value of the whole 

sentence by adding this to the strengthened semantic value of kissed 3 girls applied to 

the subject NP, some boy. Thus, the strengthened semantic value of some boy kissed 3 

girls is Some boy kissed exactly 3 girls and it is not the case that most boys kissed 3 

girls.  

 

I’ll show now that the facts about ‘embedded’ implicatures are naturally explained if 

scalar implicatures are analyzed as exhaustivity effects. After that, in sections 5.1.2 

and 5.2, I will come back to the proposals of Landman and Chierchia.  

 

 

5.1.1 Embedding under every 

 

Let us consider the following two examples: 

 

(17) Whom did every boy kiss? 

        Every boy kissed [3 girls]F 
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(18) How many girls did every boy kiss? 

Every boy kissed [3]F girls. 

 

Both (17) and (18) are ambiguous. Concerning (17), on the reading in which whom takes 

wide scope relative to every boy, the most natural interpretation of the answer is that there 

are exactly 3 girls who were kissed by every boy, and that no one else was kissed by 

every boy. On the reading in which every boy takes wide scope relative to whom, the 

most natural interpretation of the answer is that every boy kissed exactly 3 girls and no 

one else. Similarly, (18) is ambiguous between a reading in which there were exactly 3 

girls who were kissed by every boy (and there’s no implicature concerning entities other 

than girls who were or were not kissed by every boy), and a reading in which every boy 

kissed exactly 3 girls (not necessarily the same girls). 

 

Let me start with (17). I’ll do first the case where whom takes scope over every boy, 

and accordingly, in the answer, 3 girls takes scope over every boy. The relevant 

interpretation here is that there are exactly 3 girls which were kissed by every boy, 

and there is no one else who was kissed by every boy. This case will be analyzed 

much in the same way as example (17), chapter 3. I omit the references to w0 in order 

to make the formulas more readable. For the reader’s convenience, I repeat here the 

relevant formulation of exhaustivity.  

 

(19) Let P and Q be variables ranging over sets of the form *X for some 

X⊆ATOM.  

 152



We associate with noun phrases two interpretations. NPARG of type 

<<e,t>,t> and NPPRED of type <e,t>. Let T be a variable of type 

<<e,t>,t>×<e,t> (a variable over pairs of sets of sets and sets). If 

α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then vα1b = T and vα2b = P. 

 

exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → σQ v σ( T2∩P)] 

 

(17)    Whom did every boy kiss? 

       Every boy kissed [3 girls]F 

 

P= ABS(whom did every boy kiss?) ~> λy[BOY ⊆ λx*KISS(x,y)] 

T1= three girls ~> λP[∃y∈(λy*GIRL(y): |y| = 3 ∧P(y))] 

T2=BE(three girls) = λy[*GIRL(y) ∧ |y|=3] 

 

exh(17) = ∃y∈[λy*GIRL(y): |y| = 3 ∧ BOY ⊆ λx*KISS(x,y)]  ∧   

               ∀Q[[∃y∈(λy*GIRL(y): |y| = 3 ∧Q(y))] ∧Q ⊆ λy[BOY ⊆ λx*KISS(x,y)]] →   

                                        σQ v σ(λy[*GIRL(y) ∧ |y|=3]∩ λy[BOY ⊆ λx*KISS(x,y)])] 

 

In words: there is a sum of girls with exactly 3 atomic elements whom every boy 

kissed, and for every subset of plural individuals who were kissed by every boy, and 

which includes a sum of girls with exactly 3 atomic elements, its sum is a part of the 

girls with exactly 3 atomic elements who were kissed by every boy.  

 

Exh(17) means that there are exactly 3 girls who were kissed by every boy, and there 

is no one else who was kissed by every boy. The first main conjunct of exh(17) 

 153



ensures that there are at least 3 girls whom every boy kissed. The second main 

conjunct ensures that there are only 3 girls that every boy kissed, and no one else was 

kissed by every boy, here’s why. In order for σ(λy[*GIRL(y) ∧ |y|=3]∩ λy[BOY ⊆ 

λx*KISS(x,y)]) to be defined, the set (λy[*GIRL(y) ∧ |y|=3]∩ λy[BOY ⊆ 

λx*KISS(x,y)]) has to be a singleton set. That means that there has to be only one 

plural sum of girls with 3 atomic elements that was kissed by every boy, i.e., there 

cannot be 4 girls that were kissed by every boy. Further more, the formula is false if 

there are exactly 3 girls and some one which is not a girl who were kissed by every 

boy. Let us assume that Mary, Sarah, Sue and Bill were kissed by every boy. Now, of 

the subsets, Q is the set Mary, Sarah, Sue, Bill, MaryVSarah, MaryVSue, MaryVBill, 

SarahVSue, HarryVBill, BillVSue, MaryVSarahVSue, MaryVSueVBill, SarahVSueVBill, 

MaryVBillVSarah, MaryVSarahVSueVBill}. The sum of this set, MaryVSarahVSueVBill, 

is not part of the girls with exactly 3 atomic elements who were kissed by every boy 

(MaryVSarahVSue). 

 

Now we look at the case where every boy takes scope over whom, so the interrogative 

sentence is interpreted as for every boy, whom did he kiss?. Accordingly, in the 

answer, every boy takes scope over 3 girls. The relevant interpretation here is that for 

every boy, there are exactly 3 girls that he kissed, and that no boy kissed something 

which isn’t a girl.  

 

The interrogative sentence in this case is not a simple one place constituent question, 

but rather a constituent question in the scope of a universal quantifier. I assume that 

the exhaustivity operator too, that operates on the question abstract will take scope 
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under the universal quantifier. The question abstract, λy*KISS(x,y), contains a free 

variable x, which will be bound by the universal quantifier from the ‘outside’.  

 

(17’)    Whom did every boy kiss? 

         Every boy kissed [3 girls]F 

 

P= ABS(whom did x kiss?) ~> λy*KISS(x,y) 

T1= three girls ~> λP[∃y∈λy*GIRL(y): |y| = 3 ∧P(y)] 

T2=BE(three girls) = λy[*GIRL(y) ∧ |y|=3] 

 

exh(17’) = For every boy x, {∃y∈[λy*GIRL(y): |y| = 3 ∧ *KISS(x,y)] ∧  

                  ∀Q[[∃y∈λy*GIRL(y): |y| = 3 ∧Q(y)] ∧Q ⊆ λy*KISS(x,y)]] →   

                                                         σQ v σ(λy[*GIRL(y) ∧ |y|=3]∩ λy*KISS(x,y)])]} 

 

In words: For every boy, there is a sum of girls with exactly 3 atomic elements whom 

he kissed, and for every subset of plural individuals who were kissed by him, and 

which includes a sum of girls with exactly 3 atomic elements, its sum is a part of the 

girls with exactly 3 atomic elements whom he kissed.   

 

Exh(17’) means that every boy kissed exactly 3 girls and no one else. I’ll leave it to 

the reader to check this by herself. 

 

Now we move to (18). The reading in which how many girls takes wide scope relative to 

every boy will be analyzed much in the same way as example (6), chapter 4. The question 

is  interpreted as Which number(s) is/are such that every boy kissed at least that many 
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girls? The exactly effect will come through exhaustivization. For the reader’s 

convenience, I repeat here the relevant formulation of exhaustivity. 

 

(20) Let P, Q be variables ranging over sets, partially ordered by ≤., s.t. <Q, 

 ≤ > is a join semilattice.  

We associate with NPs or numerals, two interpretations: an 

interpretation of type <<e,t>,t> and an interpretation of type <e,t>.  

Let T be a variable of type <<e,t>,t>×<e,t> (a variable over pairs of 

sets of sets and sets). If α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then vα1b 

= T and vα2b = P. 

 

exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → maxQ ≤  max(T2∩P)] 

 

(18)   How many girls did every boy kiss? 

          Every boy kissed [3]F girls. 

 

P = ABS(how many girls did every boy kiss?) ~>  

λn|(λy[*GIRL(y) ∧ [BOY ⊆ λx*KISS(x,y)]])| ≥ n 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 

 

exh(18) = |(λy[*GIRL(y) ∧ [BOY ⊆ λx*KISS(x,y)]]| ≥ 3 ∧ 

                 ∀Q[[Q(3)∧Q ⊆ λn|λy(*GIRL(y) ∧[BOY⊆ λx*KISS(x,y)]]| ≥ n] → 

                    maxQ ≤ max(λn[n=3] ∩λn|λy[*GIRL(y) ∧[BOY⊆ λx*KISS(x,y)]]| ≥ n)] 
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In words: The number of girls which every boy kissed is equal or larger than 3, and 

for every subset of numbers of girls kissed by every boy which contains 3, its largest 

member is smaller than or equal to the largest number in the intersection of {3} and 

the set of numbers of girls kissed by every boy.  

 

Exh(18) means that there were exactly 3 girls kissed by every boy. The first main 

conjunct of exh(18) ensures that there were at least 3 girls who were kissed by every 

boy. I.e. the set of numbers of girls kissed by every boy is {1,2,3,…}. The second 

main conjunct of exh(18) requires that the largest number in every subset of this set is 

smaller than or equal to 3. Hence, there cannot be more than 3 girls kissed by every 

boy.  

 

On the reading in which every boy takes scope over how many girls, I assume that the 

interpretation of the interrogative sentence is  for every boy, how many girls did he 

kiss?. As in (17’), the interrogative sentence in this case too, is not a question, but a 

question in the scope of a universal quantifier. Again, I assume that the exhaustivity 

operator, which operates on the question abstract,  takes scope under the universal 

quantifier.  

 

(18’)   How many girls did every boy kiss? 

          Every boy kissed [3]F girls. 

 

P = ABS(how many girls did x kiss?) ~>  λn|(λy[*GIRL(y) ∧ *KISS(x,y)])| ≥ n 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 
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exh(18’) = for every boy x, {|(λy[*GIRL(y) ∧ *KISS(x,y)]| ≥ 3 ∧ 

                 ∀Q[[Q(3)∧Q ⊆ λn|λy(*GIRL(y) ∧ *KISS(x,y)]| ≥ n] → 

                    maxQ ≤ max(λn[n=3] ∩λn|λy[*GIRL(y) ∧ *KISS(x,y)]| ≥ n)] 

 

In words: Every boy is such that, the number of girls that he kissed is at least 3, and 

for every subset of numbers of girls kissed by him, and which contains 3, its largest 

member is smaller than or equal to the largest number in the intersection of {3} and 

the set of numbers of girls that he kissed.  

 

Exh(18’) means that every boy kissed exactly 3 girls. 

 

5.1.2 Beer and orange juice 

 

As noted in chapter 1, section 1.7, ‘embedded’ implicatures show up also in clearly 

context dependent cases, such as example (21) below: 

 

(21) A: Did everyone order beer? 

            B: Some ordered orange juice 

 

We understand B’s sentence as implicating that some did not order beer, hence the 

answer to A’s question is “no”. B’s reply answers A’s question indirectly. B chose 

not to answer A’s question, but another question, namely “For some x, what did x 

order?”. The answer to this question, if understood exhaustively, entails the answer 

to A’s original question. I’ll show how exhaustivity works in this case, using the 

formulation that was given in example (18’) above. 
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(22) For some x, what did x order? 

            Someone ordered [orange juice]F 

 

P= ABS(What did x order?) ~> λy*order(x,y) 

T1= orange juice ~> λP.P(orange juice) 

T2=BE(orange juice) = λx(x=orange juice) 

 

exh(21) = For some x, {*order(x,orange juice)∧∀Q[[Q(orange juice)∧Q ⊆ 

λy*order(x,y)] → σQ v orange juice]} 

 

In words: For some x, x ordered orange juice, and for every subset of x’s orders that 

includes orange juice, its sum is part of orange juice.  

 

It’s not hard to see that exh(22) means that there is someone who ordered only orange 

juice.  

 

We see that the exhaustivity analysis deals quite easily with cases of context 

dependent ‘embedded implicatures’. If the facts about implicatures in logically 

complex sentences suggest that implicatures are computed by grammar, the 

exhaustivity analysis is less stipulative than Landman’s and Chierchia’s theories. On 

their theories one would have to assume that an ad hoc Horn scale triggered in a 

certain context gives rise to a ‘local implicature’, that inherits up according to the 

semantic composition of the sentence. It is not clear to me why pragmatic 

considerations of ‘informativeness’ which are supposed to be the basis of ad hoc Horn 
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scales such as (orange juice, orange juice and beer) should introduce ‘local’, rather 

than ‘global’ implicatures. The term orange juice is not a scalar term. The set of 

alternatives {orange juice, orange juice and beer} would makes sense here only after 

understanding that the reply given for the question would entail the answer only after 

accommodating the implicature. On the other hand, on the exhaustivity analysis, the 

inferences in question are merely the result of applying a semantic operator relating 

questions and answers. The context dependency of these inferences comes from the 

fact that we get different exhaustivizations relative to different questions. We get a 

‘global’ exhaustivization, hence a ‘global’ implicature when the focused element has 

widest scope – it serves as a short answer to a ‘global’ question (examples 17 and 18 

above). We get a ‘local’ exhaustivization, hence a ‘local’ implicature, when the 

focused element is embedded – it serves as a short answer to a ‘local’ question 

(examples 17’, 18’ and 22 above).  

 

 

5.1.3 Embedding under intensional verbs 

 

Let us consider now the case of an embedding verb.  

 

(23) Who does John believe came? 

             Sue or Bill 

 

P= ABS(who does John believe came?) ~> λxBELIEVE(j, ^*COME(x)) 

T1= sue or bill ~> λP[P(s)∨P(b)] 

T2 = sue or bill ~> λx[(x=s)∨(x=b)] 

 160



 

Exh(23) = [BELIEVE(j, ^*COME(s))∨BELIEVE(j, ^*COME(b))]  ∧ 

                 ∀Q[[[Q(s) ∨ Q(b)]  ∧Q ⊆ λxBELIEVE(j, ^*COME(x))] →  

                                  σQ v σ[[λx[(x=j)∨(x=m)] ∩ λxBELIEVE(j, ^*COME(x))]]] 

 

The first conjunct of exh(23) ensures that λxBELIEVE(j, ^*COME(x)) includes Sue 

or Bill, hence σ[[λx[(x=j)∨(x=m)] ∩ λxBELIEVE(j, ^*COME(x))]] is only defined if 

λxBELIEVE(j, ^*COME(x))= {s} or if λxBELIEVE(j, ^*COME(x)) = {b}, and 

exh(23) reduces to: 

  

Exh(23) = [BELIEVE(j, ^*COME(s))∨BELIEVE(j, ^*COME(b))]  ∧∀Q[[[Q(s) ∨ 

Q(b)]  ∧Q ⊆ λxBELIEVE(j, ^*COME(x))] → (σQ v s ∨ σQ v b)] 

 

In words: John believes that Sue came or John believes that Bill came, and for every 

subset of individuals who John believes came which includes Sue or which includes 

Bill, its sum is part of Sue or part of Bill.  

 

It is not hard to see that exh(23) means that John believes that only Sue came or that 

only Bill came. We get the right facts about the exclusive implicature of or for this 

case.  

 

Let us do now a case with de dicto/de re ambiguity. I start with the de re reading. 

 

(24) Who does John believe came? 

            The dean 
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P= ABS(who does John believe came?) ~> λxBELIEVE(j, ^*COME(x)) 

T1= the dean ~> λP[P(σ(DEAN)] 

T2 = the dean ~> λx[x= σ(DEAN)] 

 

Exh(24) = [λxBELIEVE(j, ^*COME(x)](σ(DEAN)) ∧  

                 ∀Q[[[Q(σ(DEAN)]  ∧ Q ⊆ λxBELIEVE(j, ^*COME(x))] →  

                                       σQ v σ(λx[x=σ(DEAN)]∩λxBELIEVE(j,^*COME(x))] 

 

The first conjunct of exh(24) ensures that λxBELIEVE(j, λw*COME(x,w)) includes        

σ(DEAN), hence σ(λx[x= σ(DEAN)]∩λxBELIEVE(j, λw*COME(x,w)) is only 

defined if λxBELIEVE(j, λw*COME(x,w)) = σ(DEAN), and exh(24) reduces to:  

 

Exh(24) = [λxBELIEVE(j, λw*COME(x,w))](σ(DEAN)) ∧  

∀Q[[[Q(σ(DEAN)]  ∧ Q ⊆ λxBELIEVE(j, λw*COME(x,w))] → σQ v σ(DEAN)] 

 

In words: The dean is such a person whom John believes that came, and for every 

subset of individuals whom John believes that came which includes the dean, its sum 

is part of the dean.  

 

Exh(24) means that John believes of the dean that (s)he came, and that this person is 

the only person of whom John believes that (s)he came.   

 

In the de dicto reading, the dean does not refer to the dean in the real world, but to the 

intension of the dean.  
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(25) Who does John believe came? 

            The dean 

 

P= ABS(who does John believe came?) ~>  

λsBELIEVE(j, ^*COME(∨s)), where s is a variable of type <s,e> 

T1= the dean ~>  λP[P(^σ(DEAN))], P is a variable of type <<s,e>,t> 

T2 = the dean ~> λs[s=^σ(DEAN)] 

 

T1(P) = λP[P(^σ(DEAN))] [λsBELIEVE(j, ^*COME(∨s))] =  

[λsBELIEVE(j, ^*COME(∨s))](^σ(DEAN)) = BELIEVE(j, ^COME(σ(DEAN)) 

 

v is lifted from type e to type <s,e> by: 

s v t iff for every w: s(w) v t(w) 

 

Exh(25) = BELIEVE(j, ^COME(σ(DEAN)) ∧  

                 ∀Q[[Q(^σ(DEAN)∧Q ⊆ λsBELIEVE(j, ^*COME(∨s))] →  

                                  σQ v σ[λs[s=^σ(DEAN)] ∩ λsBELIEVE(j, ^*COME(∨s))]] 

 

The first conjunct of exh(25) ensures that λsBELIEVE(j, ^*COME(∨s)) includes 

^σ(DEAN), hence λs[s=^σ(DEAN)] ∩ λsBELIEVE(j, ^*COME(∨s))] =  

λs[s=^σ(DEAN)], and σ[λs[s=^σ(DEAN)] = ^σ(DEAN), and exh(25) reduces to:  

 

Exh(25) = BELIEVE(j, ^COME(σ(DEAN)) ∧  

                 ∀Q[[Q(^σ(DEAN)∧Q ⊆ λsBELIEVE(j, ^*COME(∨s))] →  

                                                                                  σQ v ^σ(DEAN)] 
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In words: John believes that the dean came, and for every subset of the set of 

individual concepts that includes the dean concept, such that every individual concept 

in that set is a function such that John believes that its value came, the sum of that set 

is part of the dean concept.  

 

The only way to satisfy exh(25)’s truth conditions is by letting  

λsBELIEVE(j, ^*COME(∨s)) ={^σ(DEAN)}.  

 

In the de dicto reading of John believes [the dean]F came, the focal element (the 

dean) truth conditionally seems to have narrow scope under the propositional attitude 

(believe). But unlike examples (17’), (18’) and (22) above (where we got ‘local’ 

implicatures),  the question here is ‘global’ (it is about an individual concept which 

takes widest scope), and we get a ‘global’ implicature – the dean is the only individual 

concept such that John believes its value came. Note, however, that it is also possible 

to get ‘local’ implicatures with de dicto readings. If, for example, we take John 

believes that 3 men came as an answer to the in situ interrogative John believes for 

what n that n is a number of men who came?, we would expect exhaustivization to 

take place under the scope of believe, and the exhaustive reading would be that John 

believes that exactly 3 men came. 
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5.2 Scalar implicatures under negation and in other downward entailing contexts 

 

Gazdar (1979) notes that Scalar implicatures tend to be suspended under negation. 

Indeed, the prominent interpretation of sentence (26) below is that John has less than 

3 children, and not that he either has less than 3 children or more than 3 children.  

 

(26) John doesn’t have 3 children 

 

Gazdar limits the computation of implicatures to cases were the scalar trigger is not in 

the scope of another logical operator. We saw in the previous section that this is 

wrong. Implicatures do appear under the scope of quantifiers and embedding verbs. 

Hirschberg (1985) suggests that only overt negation blocks scalar implicatures. Horn 

(1989) comments that scalar implicatures are suspended not only under negation, but 

generally in downward entailing contexts, but doesn’t give supporting evidence. 

Chierchia (ms) claims that scalar implicatures are suspended in the contexts that 

license any (as a negative polarity or as a free choice item). According to Chierchia, 

the exclusive interpretation of or is missing in all of the following cases (the examples 

are taken from Chierchia).  

 

(27) Negation: 

Sue didn’t meet Hugo or Theo. 

 

(28) Negative Quantifiers: 

No student with an incomplete or a failing grade is in good standing. 

No student who missed class will take the exam or contact the advisor. 
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(29) Restriction of every: 

Every student who wrote a squib or made a classroom presentation got 

extra credit. 

 

(30) Antecedents of conditionals: 

If Paul or Bill come, Mary will be upset. 

 

(31) Negative embedding predicates: 

John doubts/regrets/fears that Paul or Bill ate in that room. 

 

(32) Generic statements: 

A linguist or a philosopher doesn’t give easily in. 

 

(33) Before: 

John arrived before Paul or Bill. 

 

(34) Without: 

John will come without pen or notepads. 

 

(35) Comparatives: 

Theo is taller than Bill or John. 

 

(36) Verbs of comparison: 

I prefer Theo to John or Bill. 
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(37) Modality of permission: 

You may smoke or drink. 

 

(38) Questions: 

Did John or Paul arrive? 

 

(39) Imperatives: 

Get me Paul or Bill. 

 

(40) Irrealis mood: 

Ci sara qualcuno che sappia inglese o francese! 

(I hope) there will be somebody who knows English or French. 

 

I think that the generalization is wrong, and that scalar implicatures are possible in 

most, if not all of the above contexts, as demonstrated in the following examples: 

 

(41) Negation: 

John doesn't have three kids – he is not the one to stop at an odd 

 number of kids. 

 

(42) Negative quantifiers: 

No boy kissed 3 girls (but some kissed 2, and some kissed 4). 
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(43) Restriction of every: 

Everyone who spent $333 will get a full refund (those who spent more 

won’t).   

 

(44) Antecedents of conditionals: 

If Paul is good at mathematics he’ll get a grade between 85 and 90, if 

he’s excellent, he’ll get over 95.  

 

(45) Negative embedding predicates: 

John doubts that Sue has 3 children… he tends to believe that she has 

either 2 or 4. 

 

(46) Generic statements:      

A pretty girl is likely to find a date, but a gorgeous girl isn’t. Not many 

guys would dare asking her.   

 

(47) Before: 

Mother serves the soup boiling hot. Most people eat it before it gets  

cold, but Fred usually makes the mistake of eating it before it gets  

warm. 

 

(48) Without: 

I can manage without decent wine, but not without superb wine. 
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(49) Comparatives:  

John is taller than most (but not all) guys.1  

 

(50) Verbs of comparison: 

I prefer warm weather, but I detest hot weather. 

 

(51) Modality of permission: 

You may bring a pet (but not two). 

  

(52) Questions:  

A: Does John have 3 children? 

B: No, he has 4. 

 

(53) Imperatives: 

A: How many eggs do you need?  

B: Get me 3 eggs (no more and no less). 

 

Both Landman(2000) and Chierchia (ms.) impose on their implicature inheritance 

mechanisms some constraint that will block the implicatures in downward entailing 

contexts.  

 

As mentioned before, Landman suggests that scalar implicatures are introduced 

locally, and inherit up following the semantic composition of the sentence. Landman 

assumes that the implicature won’t inherit up if the implicature calculated at some 
                                                 

1 The issues of downward entailingness and licensing of polarity items in comparatives are highly 
complex and problematic (See Schwarzschild & Wilkinson 2002). 
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stage contradicts the meaning calculated at that stage. Let us assume that in sentence 

(54) below, the scalar implicature is introduced at the level of have 3 children, and is 

the set (55). 

 

(54) John doesn’t have 3 children 

(55) {x: x has no more than 3 children} 

 

In the process of inheriting up, we need to apply negation, and will get (56): 

 

(56) {x: x has more than 3 children} 

 

Now, (55) contradicts the meaning built at this stage: 

 

(57) {x: x has less than 3 children} 

 

And the inheritance of the implicature would stop. 

 

Chierchia assumes a constraint to the effect that a strengthened semantic value of a 

sentence is rejected if it is no stronger than the plain semantic value. The strengthened 

semantic value of John doesn’t have 3 children would be John doesn’t have exactly 3 

children, which is weaker than its meaning, hence it is rejected. 

 

It is important to note that neither Landman nor Chierchia can derive the correct 

implicature for the following case: 
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(58) A: Whom did no girl kiss? 

            B: No girl kissed [John or Bill]F 

 

Maybe the most natural interpretation of (58B) is equivalent to “No girl kissed John 

and No girl kissed Bill” (which results from an inclusive interpretation of or). But an 

exhaustive reading (with an exclusive interpretation of or) is also possible here, and 

B’s utterance can be interpreted as conveying that either the only one which no girl 

kissed is John, or the only one which no girl kissed is Bill.  

 

On Landman’s theory, the exclusive implicature of or comes at the VP level, the 

implicature of {x: x kissed John or Bill} being {x: x didn’t kiss both John and Bill} 

Applying this to no girl will result in No girl is such that she didn’t kiss both John 

and Bill, i.e. Every girl kissed John and Bill. This clearly contradicts the meaning of 

the sentence, so this implicature is cancelled. Although Landman’s theory predicts 

correctly that No girl kissed John and Bill does not implicate that every girl kissed 

John and Bill, it does not gives us a way to compute the correct implicature of this 

sentence. 

 

On Chierchia’s inheritance mechanism, we first compute the strengthened value of 

kissed John or Bill which is kissed John or Bill and not both. We apply this to no girl 

(we do not have to worry about the scalar element no because it is the highest value in 

its scale), and get No girl kissed (John or Bill and not both). This means that every 

girl either kissed both John and Bill or none of them. This strengthened meaning is 

weaker than the sentence’s meaning which is equivalent to ‘every girl didn’t kiss John 
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and Bill’, hence it is rejected. Chierchia’s theory too succeeds in filtering out the 

wrong implicature, but does not have a way to predict the correct implicature. 

 

Let us see now what are the predictions of the exhaustivity theory of scalar 

implicatures concerning these cases. According to our theory, the implicatures of a 

sentence depend crucially on the question that it answers. For example, the sentence 

John has 3 children will be interpreted as John has exactly 3 children, only if it is 

taken to answer the question How many children does John have?. The exactly effect 

won’t show up if we take our sentence to answer the question Who has 3 children? or 

the question does John have 3 children? (ignoring, for now, the possibility that the 

question itself might carry the exactly implicature). Concerning the negated sentence, 

John doesn’t have 3 children, the exactly implicature cannot show up if it answers 

who doesn’t have 3 children? or does John have 3 children?. Our best bet to get an 

exactly implicature for this sentence is to interpret it as an answer to How many 

children doesn’t John have?. I will show that in this case as well, an exactly reading 

does not exist, because exhaustivization yields a contradiction. 

 

(59) How many children doesn’t John have? 

       Three 

 

P = ABS(how many children doesn’t john have?) ~> λn|(λy[*CHILD(y) ∧ 

 ¬*HAVE(j,y)])| ≥ n 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 
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exh(59) = |(λy[*CHILD(y) ∧¬*HAVE(j,y)]| ≥ 3∧∀Q[[Q(3)∧Q ⊆ λn|λy(*CHILD(y) 

∧¬*HAVE(j,y)]| ≥ n] → maxQ ≤ max(λn[n=3] ∩λn|λy[*CHILD(y) ∧¬*HAVE(j,y)]| 

≥ n)] 

 

In words: John doesn’t have 3 children or more, and for every subset of numbers of 

children that John doesn’t have and which contains 3, its largest member is smaller 

than or equal to the largest number in the intersection of {3} and the set of numbers of 

children that John doesn’t have. 

 

Exh(59)’s truth conditions cannot be fulfilled. The first main conjunct of exh(59) 

ensures that John doesn’t have 3 children or more. This means that the set of numbers 

of children that John doesn’t have is{3, 4…}. The second main conjunct of exh(59) 

requires that the largest number in every subset of this set is smaller than or equal to 

3. Hence, The set of numbers of children that John doesn’t have must be {3}. But this 

is not a valid set of numbers of children that John doesn’t have. If John doesn’t have 3 

children, he also doesn’t have 4 children or more. Exhaustivization in this case yields 

a contadiction, so I assume that we do not exhaustivize.  

 

Indeed, 3 cannot be an exhaustive answer to the question how many children doesn’t 

John have? An exhaustive answer in this case would be 3 or more.  

  

(60) How many children doesn’t John have? 

       Three or more 
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P = ABS(how many children doesn’t john have?) ~> λn|(λy[*CHILD(y) ∧ 

 ¬*HAVE(j,y)])| ≥ n 

T1 = three or more ~> λP∃n[n ≥ 3 ∧ P(n)] 

T2 = three ~> λn[n≥3] 

 

exh(60) = |(λy[*CHILD(y) ∧¬*HAVE(j,y)]| ≥ 3∧∀Q[[Q(≥3)∧Q ⊆ λn|λy(*CHILD(y) 

∧¬*HAVE(j,y)]| ≥ n] → maxQ ≤ max(λn[n≥3] ∩λn|λy[*CHILD(y) ∧¬*HAVE(j,y)]| 

≥ n)] 

 

In words: John doesn’t have 3 children or more, and for every subset of numbers of 

children that John doesn’t have and which contains 3 or a larger number, its largest 

member is smaller than or equal to the largest number in the intersection of {3,4,..} 

and the set of numbers of children that John doesn’t have. 

 

It’s easy to see that in this case exhaustivization does not have any effect. 

 

The fact that the exhaustivization of (59) is not possible should not come as surprise. 

The exhaustivization of John has 3 children in the context of how many children does 

John have? is equivalent to The number of John’s children is exactly 3. Similarly, the 

exhaustivization of John doesn’t have 3 children in the context of How many children 

doesn’t John have is equivalent to the number of children that John doesn’t have is 3, 

which is always undefined, because there is no such number.  
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I think, however, that sometimes we do apply exh under the scope of negation to yield 

an exactly reading (and hence there is no need to assume that these are cases of  

metalinguistic negation). Consider (59’):  

 

(59’) How many children does John have? 

 John doesn’t have [3]F children (he is not the one to stop at an odd  

number). 

 

Nirit Kadmon (p.c.) has suggested to me that the reply in (59’) can be interpreted as 

conveying that 3 is not the exhaustive answer. 

 

P = ABS(how many children does john have?) ~> λn|(λy[*CHILD(y)∧*HAVE(j,y)])| 

≥ n 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 

 

exh(59’) = it is not the case that: {|(λy[*CHILD(y) ∧*HAVE(j,y)]| ≥ 3∧     

∀Q[[Q(3)∧Q ⊆ λn|λy(*CHILD(y) ∧*HAVE(j,y)]| ≥ n] →                                    

maxQ ≤ max(λn[n=3] ∩λn|λy[*CHILD(y) ∧¬*HAVE(j,y)]| ≥ n)]} 

 

In words: It is not the case that: John has 3 children or more, and for every subset of 

numbers of children that John has and which contains 3, its largest member is smaller 

than or equal to the largest number in the intersection of {3} and the set of numbers of 

children that John has. 
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Exh(59’) means that it is not the case that John has exactly 3 children (he may have 

less than 3 or more than 3). This is a case where the exhaustive reading contradicts the 

non exhaustive reading, and maybe this is the reason why we use the special ‘meta-

linguistic’ intonation. This, however, shouldn't keep exh from applying, as the 

contradiciton is not within the result of exh.  In this case the implicature is local – it 

falls within the scope of negation. 

 

I will show now that exhaustivization predicts the correct implicature for (58), which 

is repeated as (61) below.  

 

(61) Whom did no girl kiss?  

           No girl kissed [John or Bill]F

 

P = ABS(whom did no girl kiss?) ~> λy[GIRL∩λx*KISS(x,y)=∅] 

T1 = john or bill ~> λP[P(j)∨P(b)]   

T2 = john or bill ~> λx[x=j ∨ x=b] 

 

exh(61) = [GIRL∩λx*KISS(x,j) = ∅ ∨ GIRL∩λx*KISS(x,b) = ∅] ∧  

                 ∀Q[[[Q(j) ∨ Q(b)]  ∧ Q ⊆ λy[GIRL∩λx*KISS(x,y)=∅]] →  

                              σQ v σ[[λx[(x=j)∨(x=b)] ∩ λy[GIRL∩λx*KISS(x,y)=∅]]] 

 

The first conjunct of exh(61) ensures that λy[GIRL∩λx*KISS(x,y)=∅] includes at 

least John or that it includes at least Bill, hence σ[[λx[(x=j)∨(x=b)] ∩ 

λy[GIRL∩λx*KISS(x,y)=∅]] is only defined if λy[GIRL∩λx*KISS(x,y)=∅]= {j} or 

if λy[GIRL∩λx*KISS(x,y)=∅]= {b} , and exh(46) reduces to:  
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Exh(61) = [GIRL∩λx*KISS(x,j) = ∅ ∨ GIRL∩λx*KISS(x,b) = ∅] ∧ 

                  ∀Q[[[Q(j) ∨ Q(b)]  ∧ Q ⊆ λy[GIRL∩λx*KISS(x,y)=∅]] →  

                                                                      σQ v (σQ v j ∨ σQ v b)] 

 

In words: No girl kissed John or no girl kissed Bill and for every subset of the 

individuals who no girl kissed and which includes John or which includes Bill, its 

sum is part of John or part of Bill. 

 

So, exh(61) means that either the only individual which no girl kissed is John or the 

only individual which no girl kissed is Bill. This interpretation is certainly available in 

this context, and the fact that the exhaustivity theory predicts it is an important 

advantage over Landman’s and Chierchia’s theories.  

 

I will now do three examples with doubt.  

 

(62) Who does John doubt came? 

             Sue or Bill 

 

P= ABS(who does John doubt came?) ~> λxDOUBT(j, ^*COME(x)) 

T1= sue or bill ~> λP[P(s)∨P(b)] 

T2 = sue or bill ~> λx[(x=s)∨(x=b)] 

 

Exh(62) = [DOUBT(j, ^*COME(s))∨DOUBT(j, ^*COME(b))]  ∧ 

                  ∀Q[[[Q(s) ∨ Q(b)]  ∧Q ⊆ λxDOUBT(j, ^*COME(x))] →  

                               σQ v σ[[λx[(x=j)∨(x=m)] ∩ λxDOUBT(j, ^*COME(x))]]] 
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The first conjunct of exh(62) ensures that λxDOUBT(j, ^*COME(x)) includes Sue or 

Bill, hence σ[[λx[(x=j)∨(x=m)] ∩ λxDOUBT(j, ^*COME(x))]] is only defined if 

λxDOUBT(j, ^*COME(x))= {s} or if λxDOUBT(j, ^*COME(x)) = {b}, and exh(62) 

reduces to: 

  

Exh(62) = [DOUBT(j, ^*COME(s))∨DOUBT(j, ^*COME(b))]  ∧ 

                 ∀Q[[[Q(s)∨Q(b)] ∧Q ⊆ λxDOUBT(j, ^*COME(x))] → (σQ v s ∨ σQ v b)] 

 

In words: John doubts that Sue came or John doubts that Bill came, and for every 

subset of individuals who John doubts came which includes Sue or which includes 

Bill, its sum is part of Sue or part of Bill.  

 

Exh(62) means that John only doubts that SUE came or John only doubts that BILL 

came. The exhaustivity theory predicts correctly that such an exclusive interpretation 

is possible.   

 

(63) How many girls does John doubt Bill kissed? 

       John doubts that Bill kissed 3 girls 

 

First I’ll do the reading in which 3 takes wide scope relative to doubt (i.e. the question 

is interpreted as asking what is a number n such that there are n girls that John doubts 

Bill kissed). 

 

P = ABS(How many girls does John doubt Bill kissed?) ~>  

λn|(λy[*GIRL(y) ∧ DOUBT(j, ^*KISS(b,y)]| ≥ n 
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T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 

 

exh(63) = |(λy[*GIRL(y) ∧ DOUBT(j, ^*KISS(b,y)]| ≥ 3 ∧ 

                 ∀Q[[Q(3)∧Q ⊆ λn|λy(*GIRL(y) ∧ DOUBT(j, ^*KISS(b,y)]| ≥ n] →  

                  maxQ≤max(λn[n=3]∩λn|λy[*GIRL(y)∧DOUBT(j,^*KISS(b,y)]| ≥ n)] 

 

In words: There are at least 3 girls of whom John doubts that Bill kissed, and for 

every subset of numbers of girls of whom John doubts that Bill kissed, and which 

contains 3, its largest member is smaller than or equal to the largest number in the 

intersection of {3} and the set of numbers of girls of whom John doubts that Bill 

kissed.  

 

Exh(63) means that there are exactly 3 girls of whom John doubts that Bill kissed. 

Exh(63)’s first main conjunct requires that there are at least 3 girls of whom John 

doubts Bill kissed. I.e. the set of numbers of girls of whom John doubts that Bill 

kissed is {1,2,3} or {1,2,3,4} or {1,2,3,4,5}… The second main conjunct of exh(63), 

requires that the maximal number of every subset of this set which contains 3, is 

smaller or equal to 3. I.e. the set is {1,2,3}. The exhaustivity theory predicts correctly 

that this reading of John doubts that Bill kissed 3 girls has the exactly implicature in 

this context.  

 

(63) has also a reading in which 3 takes narrow scope relative to doubt. In this 

reading, (63) can be taken as an answer to what is a number n such that John doubts 

that n is a number of girls that Bill kissed?  
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(63’) How many girls does John doubt Bill kissed? 

       John doubts that Bill kissed 3 girls 

 

P = ABS(How many girls does John doubt Bill kissed?) ~>  

λnDOUBT(j, ^[|*GIRL(y) ∧ λy*KISS(b,y)| ≥ n]) 

T1 = three ~> λP[P(3)] =λP∃n[n = 3 ∧ P(n)] 

T2 = three ~> λn[n=3] 

 

exh(63’) =  DOUBT(j, ^[|*GIRL(y) ∧*KISS(b,y)| ≥ 3]) ∧ 

                 ∀Q[[Q(3)∧Q ⊆ λnDOUBT(j, ^[|*GIRL(y) ∧ λy*KISS(b,y)| ≥ n]) →  

                  maxQ≤max(λn[n=3]∩ λnDOUBT(j, ^[|*GIRL(y) ∧ λy*KISS(b,y)| ≥ n])] 

 

In words: John doubts that Bill kissed at least 3 girls, and for every subset of numbers 

such that John doubts that Bill kissed at least that many girls, and which contains 3, its 

largest member is smaller than or equal to the largest number in the intersection of 

{3} and the set of numbers such that John doubts that Bill kissed at least that many 

girls.  

 

Exh(63’) cannot be true. The reason is the same as for example (59). The first main 

conjunct of exh(63’) requires that John doubts that Bill kissed at least 3 girls. But if 

John doubts that Bill kissed 3 girls, then he also doubts that Bill kissed 4 girls etc… 

Hence the total set of such numbers is {3,4,5,…}, and this set doesn’t have a maximal 

element. The exhaustivity theory predicts correctly that this reading of John doubts 

that Bill kissed 3 girls cannot have the exactly implicature in this context. 

 180



 

Chierchia gives the following example from Levinson(2000) to show that sometimes 

scalar implicatures do show up in downward entailing environments. 

 

(64) If John has two cars, the third one parked outside must be somebody  

else’s. 

 

Chierchia concludes that this implicature is accommodated somehow to the 

antecedent of the conditional, because it cannot be inherited up by his mechanism. He 

assumes that in this example we restrict our consideration to sets of worlds from 

which people with more than two cars are excluded. In the exhaustivity theory we do 

not have to assume a special accommodation procedure for such cases. 

 

(65) A: How many cars does John have, such that if he has that many cars,  

     the third one parked outside must be somebody else’s?  

            B: If John has [two]F cars, the third one parked outside must be  

     somebody else’s? 

 

I think that A’s question should be interpreted along the lines of the slightly 

awkwardly formulated in situ question If the answer to “how many cars does J 

have?” is what, then the third one parked outside must be somebody else’s? I.e. I 

assume that the interrogative sentence here is a conditional which embeds a question 

in its antecedent. The exhaustivization will take place inside the antecedent.  
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P = ABS(If the answer to “how many cars does J have?” is what, then the third one 

parked outside must be somebody else’s?) ~>  If λn|(λy[*CAR(y) ∧ *HAVE(j,y,])| ≥ 

n, the third one parked outside must be somebody else’s 

T1 = two ~> λP[P(2)] =λP∃n[n = 2 ∧ P(n)] 

T2 = two ~> λn[n=2] 

 

exh(65) = if {|(λy[*CAR(y) ∧*HAVE(j,y)]| ≥ 2 ∧ 

                      ∀Q[[Q(2)∧Q ⊆ λn|λy(*CAR(y) ∧*HAVE(j,y)]| ≥ n] → 

                                maxQ ≤ max(λn[n=2] ∩λn|λy[*CAR(y) ∧*HAVE(j,y)]| ≥ n)]},  

the third one parked outside must be somebody else’s. 

 

In words: If {John has at least 2 cars, and for every subset of numbers of cars owned 

by John which contains 2, its largest member is smaller than or equal to the largest 

number in the intersection of {2} and the set of numbers of cars owned by John}, the 

third one parked outside must be somebody else’s.  

 

Exh(65) means that if John has exactly 2 cars, the third one parked outside must be 

somebody else’s.  

 

 

5.3 Suspension or cancellation of scalar implicatures in non downward entailing 

      environments 

 

Consider the examples given in (66) and (67) below: 
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(66) a. Three, if not four men came 

            b. Three and maybe four men came 

            c. Four, or at least three men came 

 

(67) Three, actually/in fact, four men came 

 

Horn (1989) calls the environments in (66) suspenders: the speaker is explicitly 

leaving the possibility open that a higher value on the relevant scale obtains. The 

environments in (67), according to Horn, do not just suspend but cancel the scalar 

implicature, they explicitly assert that a higher value on the scale obtains.  

 

Examples such as in (66a) and (66b) are discussed in Gazdar (1979). According to 

Gazdar, elements on Horn scales introduce potential scalar implicatures, which will 

turn to actual implicatures only under certain conditions. Gazdar claims that on the 

utterance of U, first the entailments of U are added to the context. Next, all the 

potential clausal implicatures are added that are consistent with the context (which 

includes now the entailments of U). Finally, potential scalar implicatures will be 

added, only if they are consistent with the context (which includes now also the 

clausal implicatures). On Gazdar’s account potential scalar implicatures will turn to 

be actual implicatures only if they are consistent with the entailments and the clausal 

implicatures of U.  

 

In sentence (66a) above, the potential scalar implicature, introduced by 3, no more 

than 3 men came, is not realized as an actual implicature, because it contradicts the 

clausal implicature of the conditional, It is possible that 4 men came. In sentence 
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(66b), the potential scalar implicature, John has no more than 4 children, is not 

realized, because it contradicts the entailment  maybe 4 men came.  

 

Gazdar does not explain why clausal implicatures take precedence over scalar 

implicatures, hence is theory is somewhat arbitrary. 

 

How should we analyze the cases in (66)-(67) within the exhaustivity theory of scalar 

implicatures? 

 

I would like to claim that in none of the above cases an implicature is suspended or 

cancelled. The sentences in (66) are simply such that their exhaustivizations mean that 

exactly 3 or exactly 4 men come, whereas the exhaustivizations of the sentences in 

(67) mean that exactly 4 men came.  

 

Winter (1998) mentions that the semantic effect of the modal maybe in sentence (68) 

is similar to a disjunction: (68) seems to be equivalent to (69). 

 

(68) The guests are John, Bill, and Henry, and maybe Susan 

(69) The guests are john, Bill, and Henry or John, Bill, Henry and Susan 

 

Landman(2004) gives a compositional account of sentence adverbials inside noun 

phrase constructions. According to Landman, (68) asserts that the function which 

maps each epistemic alternative onto what the guests are according to that alternative 

is a function which maps alternatives either onto the sum of John, Bill and Henry, or 

onto the sum of John, Bill, Henry and Susan. We assert (68) when we don’t yet know 

 184



what the actual set of guests is, but we have reduced the alternatives to alternatives of 

the above two kinds. It seems that the same happens in (66b). Three and maybe four is 

equivalent to three or four.  

 

Sentences (68) and (69) have equivalents with if not or or at least instead of maybe or 

or: 

 

(70) The guests are John, Bill and Henry, if not John, Bill, Henry and Susan 

(71) The guests are John, Bill, Henry and Susan, or at least John, Bill and  

Henry 

 

So, the expressions three if not four in (66a) and three or at least 4 in (66c) have also 

the interpretation three or four.  

 

Now let us see what the exhaustivization of three or four men came (or three and 

maybe four or if not three, four or three or at least four) is in the context of How many 

men came? 

 

(72) How many men came? 

            3 or 4 / 3 and maybe 4/ 3, if not4/ 3 or at least 4 

 

P = ABS(how many men came?) ~> λn|(λx[*MAN(x) ∧ *COME(x)])| ≥ n 

T1 = 3 or 4 /3 and maybe 4/3, if not4/3 or at least 4 ~>  

λP[P(3)∨P(4)] = λP∃n[(n = 3 ∨ n=4) ∧ P(n)] 

T2 = three or four/ three and maybe four/three, if not four ~> λn[n=3∨n=4] 
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exh(72) = [|(λx[*MAN(x) ∧*COME(x)]| ≥ 3 ∨ |(λx[*MAN(x) ∧*COME(x)]| ≥ 4] ∧  

                 ∀Q[[[Q(3) ∨Q(4)]∧Q ⊆ λn|λx(*MAN(x) ∧*COME(x)]| ≥ n] →  

                               maxQ ≤ max(λn[n=3∨n=4] ∩λn|λy[*MAN(x) ∧*COME(x)]| ≥ n)] 

 

In words: 3 men came or 4 men came, and for every subset of numbers of men who 

came which contains 3 or which contains 4, its largest member is smaller than or 

equal to the largest number in the intersection of {3,4} and the set of numbers of men 

who came. 

 

Exh(72) means simply that either exactly 3 men came or exactly 4 men came.  

 

Concerning (67), Three, actually/in fact, four men came, I assume that the 

interpretation of the expressions three, actually four, and three, in fact four is simply 

4. One of the uses of Actually, and in fact is to state that the hearer should replace the 

information given in the preceding expression with the information given in the 

following. A constraint on this use is that the meaning of the ‘correct’ expression 

should be close to the meaning of the ‘cancelled’ expression. Compare (73) with the 

oddness of (74): 

 

(73) The flat is painted white, actually/in fact, light beige 

(74) #The flat is painted white, actually/in fact, red 

 

Now, we are ready to analyze the cases in (67): 

 

 186



(75) How many men came? 

           Three, actually/in fact four 

 

 

P = ABS(how many men came?) ~> λn|(λx[*MAN(x) ∧ *COME(x)])| ≥ n 

T1 = three, actually/ in fact four  ~> λP∃n[(n = 4) ∧ P(n)] 

T2 = three, actually/ in fact four  ~> λn[n = 4] 

 

exh(75) = |(λx[*MAN(x) ∧*COME(x)]| ≥ 4 ∧ 

                 ∀Q[[Q(4) ∧Q ⊆ λn|λx(*MAN(x) ∧*COME(x)]| ≥ n] → 

                                   maxQ ≤ max(λn[n=3V4] ∩λn|λy[*MAN(x) ∧*COME(x)]| ≥ n)] 

 

In words: 4 men came, and for every subset of numbers of men who came which 

contains 4, its largest member is smaller than or equal to the largest number in the 

intersection of {4} and the set of numbers of men who came. 

 

Exh (75) means that exactly 4 men came.  

 

Real cases of suspending or canceling an implicature are cases where the implicature 

was indeed inferred, but then removed from some reason, like the cases in (76) – (77). 

 

(76) A: How many men came? 

            B: Three. No/ in fact/ actually, four 

(77) A: How many men came? 

             B: Three… Maybe four. 
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In (76), A accepts the answer three, and exhaustivizes it, i.e. interprets it as conveying 

that exactly 3 men came. When B corrects herself, A discards the answer three, 

accepts the new answer, four, and exhaustivizes it, i.e. interprets it as conveying that 

exactly 4 men came.  

 

In (77), the procedure is a bit different. Initially, A accepts three as the answer, and 

exhaustivizes it, i.e. interprets it as conveying that exactly 3 men came. When B 

continues, A realizes that the exhaustive meaning is not compatible with the new 

information, she turns back to the non-exhaustive interpretation, adds to it the new 

information, and exhaustivizes the result, interpreting B’s complete utterance as 

conveying that either exactly 3 or exactly 4 men came.  
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Chapter 6 

Weak Quantity Implicatures 

  

 

A weak quantity implicature of a sentence ϕ is the inference that the speaker doesn’t 

know/believe that ψ, where ψ is a stronger statement than ϕ. In chapter 1, I showed 

that Gricean theories derive directly only weak quantity implicatures. These 

implicatures are often too weak. In order to strengthen a weak quantity implicature to 

a strong quantity implicature of the form the speaker knows/believes that notψ, we 

need the additional premise that the speaker knows whether ψ. I discussed the fact 

that strong implicatures do exist in cases where this additional premise cannot be 

made (see discussion on chapter 1, sections 1.2, 1.3, 1.5 and 1.6). The exhaustivity 

analysis of implicatures (chapters 3 and 4) computes inferences which are not 

embedded under an epistemic operator (unless it is present in the sentence itself). So 

our “implicatures” are not generally of the form the speaker doesn’t know/believe 

than ψ, or the speaker knows/believes that notψ. But, if our theory predicts that a 

certain sentence in a certain context has the inferenceχ, Grice’s maxim of Quality will 

ensure it has also the inference the speaker knows/believes that χ. Therefore, loosely 

speaking, the exhaustivity theory of implicatures computes only strong quantity 

implicatures. However, in some cases, such as the clausal implicatures of conditionals 

or disjunctions, or Grice’s ‘holiday in France’ example (see discussion in chapter 1, 

section 1.2), all we get is the weak quantity implicature. The ‘corresponding’ strong 
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implicature is not present. In the present chapter, I show how the exhaustivity 

operator helps us to derive these weak inferences. 

 

 

6.1 Clausal implicatures 

 

A kind of context dependent inferences that conditionals and disjunctions have, and 

which are labeled ‘clausal implicatures’, are exemplified in (1) and (2) below: 

 

(1) If there’s light in John’s window, he is at home 

Clausal implicatures:  (i) As far as the speaker knows, it is possible that  

     there is light in John’s window 

                                     (ii) As far as the speaker knows, it is possible  

      that there is no light in John’s window 

                                     (iii) As far as the speaker knows ,it is possible 

     that John is at home 

                                     (iv) As far as the speaker knows, it is possible  

                                                                that John isn’t at home 

 

(2) John or Bill came 

Clausal implicatures:  (i) As far as the speaker knows, it is possible that  

     John came 

                                    (ii) As far as the speaker knows, it is possible  

     that John didn’t come 
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(iii) As far as the speaker knows, it is possible that 

   Bill came  

                                           (iv) As far as the speaker knows, it is possible that 

   Bill didn’t come 

 

On Gricean theories, the derivation of these implicatures is straightforward. Stronger 

alternatives to (2) are: 

 

(3) John came 

(4) Bill came 

 

And (5)-(6) are derived as quantity implicatures: 

 

(5) The speaker doesn’t know that John came 

(6) The speaker doesn’t know that Bill came 

 

In chapter 1, section 1.2, I argued that the epistemic operator used in the Gricean 

quantity implicatures is not know on its strong factive sense, but a weaker epistemic 

operator, something like ‘follows from the available information’.  

 

(5) is compatible with cases where that speaker does not know whether John came, 

and it is also compatible with cases where the speaker knows that John didn’t come. 

But if the latter case were true, according to Quantity, the speaker would utter the 

more informative statement Bill came, and not the weaker statement John or Bill 
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came. Hence, the speaker doesn’t know whether John came. Using similar 

considerations, from (6), we get that the speaker doesn’t know whether Bill came.  

 

The conditional case works much in the same way. If we take the conditional to be a 

strict implication, (ϕ→ψ), we need to assume that the modal base of the necessity 

operator is the same as the modal base of the epistemic operator of the implicatures.  

 

Now, I have argued in the bulk of this thesis, that we do not need the Quantity maxim 

for deriving scalar implicatures. If can show that weak quantity implicatures too can 

be given an analysis which does not refer to the Quantity maxim, we will no longer 

have use for the maxim at all, and we will be able to get rid of it altogether. 

 

We have already analyzed in chapter 3, sentences such as in (7). The exhaustivization 

of the answer in (7) is given in (8).   

 

(7) A: Who came? 

B: John, Bill and Sue came 

 

(8) Only John, Bill and Sue came  

 

After exhaustivization, B fully answers A’s question. (8) specifies all comers. By the 

maxim of Quality (which we do not get rid of), we can infer that B knows who came, 

and who didn’t come. No weak implicature is derived in this case.  
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Now we look at the question/answer pair in (9). The exhaustivization of (9) is given in 

(10). 

 

(9) A: Who came? 

       B: John or Bill  

 

(10) Only John or only Bill came 

 

Even after exhaustivization, B does not give a complete answer. We cannot infer the 

set of comers from B’s answer. There are two possibilities here: either B knows the 

answer to the question who came?, and does not want to give it for some reason or 

another, or he does not know the answer to that question. Let us assume the latter 

option. By Quality, we can infer that B knows that either only John came, or that only 

Bill came. This allows 3 possibilities: B knows that only John came, B knows that 

only Bill came, B knows that only one of the two came, but he doesn’t know which 

one. Only the third possibility is compatible with the assumption that B does not 

know the answer to who came? Therefore, we can derive the clausal implicatures that 

as far as B knows, it is possible that John came, it is possible that John didn’t come, it 

is possible that Bill came, and it is possible that Bill didn’t come.  

 

In other words: Groenendijk and Stokhof’s theory of questions defines the notion of 

an answer as a complete answer. John or Bill doesn’t count as an answer to the 

question who came?, and from that and Quality we derive that B doesn’t know the 

answer. So what B does instead, is give a partial answer. He does not answer A’s 

question, but brings him closer to an answer. 
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We can stipulate, then, a maxim of Quality for question answering, which says: 

Answer the Question! This reinterprets the bit of Quantity used in explaining 

clausal implicatures in terms of Quality.  

 

If we have a reason to think that B knows the full answer, but does not want to give it, 

the clausal implicatures would not be derived. 

 

Let us do another example with a disjunction, but this time in the context of a yes/no 

question. 

 

(11) A: Did John or Bill come? 

           B: Yes 

 

I take it that a yes/no question denotes the set of worlds in which the answer to it is 

yes. The terms yes and no, are functions from sets of worlds to truth values. Yes maps 

a set of worlds to 1, if the world of evaluation is a member of the denotation of the 

question, and to 0 otherwise. We can think of yes and no as generalized quantifiers 

over sets of worlds. Let us see if and how we can use our formulation of exhaustivity 

in this case.  

 

(12) Let P, Q be variables ranging over sets of worlds, partially ordered by  

≤., s.t. <Q, ≤ > is a join semilattice. 

We associate with yes and no two interpretations: an interpretation of 

type <<s,t>,t> and an interpretation of type <s,t>.  
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Let T be a variable of type <<s,t>,t>×<s,t> (a variable over pairs of 

sets of sets and sets). If α∈EXP<<e,t>,t>×<e,t> and  vαb = <T,P >, then 

 vα1b = T and vα2b = P. 

 

exh = λTλP[T1(P)∧∀Q[[T1(Q)∧Q ⊆ P] → maxQ ≤  max(T2∩P)] 

 

The variable P (the question) in this case is a variable over sets of worlds. Q is also a 

variable over sets of worlds. T1 (the ‘generalized quantifier’ interpretation of yes or 

no) is a variable over functions from sets of worlds to truth values. In order for all 

terms in the formula to be well defined, the variable T2 must be a variable over sets of 

worlds. T2 is the set interpretation of yes and no. The set interpretation of yes will be 

the set of worlds which are identical to the world of evaluation, i.e. the singleton set 

which includes only the world of evaluation.  

 

Now I get to the interpretation of the partial order and the maximality operator. Sets 

of worlds, unlike plurality constructions and sets of cardinalities, do not normally 

have maximal elements (Unless we’re dealing with phenomena such as 

counterfactuals that make use of a relation of similarity to the world of evaluation). 

I’ll make a stipulation here. The set of possible worlds contains a special element, the 

world of evaluation, w0. Let V be a set of worlds. maxV = w0, if w0∈V, undefined 

otherwise. The partial ordering on the set of worlds will be defined as follows: for 

every world, w, w ≤ w0. Except of the world of evaluation, no world is ordered 

relative to another.  
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It is easy to see that any subset V of W which contains w0 is a join semilattice. Any 

set of worlds which does not contain w0 is not a join semilattice. 

 

(11)   A: Did John or Bill come? 

          B: Yes 

 

P= ABS(did john or bill come?) ~> λw[COME(j,w)∨ COME(b,w)]  

T1=  Yes  ~> λP[w0∈P]; P is a variable of type <s,t> 

T2=  BE(T1) = λTλw[T(λv[v=w])]( λP[w0∈P]) = λw[λP[w0∈P](λv[v=w])] = 

λw[w0∈(λv[v=w])] = λw[w0∈{w}] = {w0} 

 

Exh(11) = w0∈λw[COME(j,w)∨ COME(b,w)] ∧  

                 ∀Q[[w0∈Q ∧Q ⊆ λw[COME(j,w)∨ COME(b,w)]] →  

                                                  maxQ ≤ max({w0}∩λw[COME(j,w)∨ COME(b,w)])]] 

 

The first main conjunct of Exh(11) states that w0∈λw[COME(j,w)∨ COME(b,w)], 

hence max({w0}∩λw[COME(j,w)∨ COME(b,w)])]] = w0. For every subset of worlds 

Q, which includes w0, maxQ = w0, and exh(11) reduces to: 

 

Exh(11) = w0∈λw[COME(j,w)∨ COME(b,w)] ∧  

                 ∀Q[[w0∈Q ∧ Q ⊆ λw[COME(j,w)∨ COME(b,w)]] → w0 ≤ w0

 

But w0 ≤ w0 always holds, so the whole second main conjunct of exh(11) is trivial, and 

exh(11), reduced to: 
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Exh(11) = w0∈λw[COME(j,w)∨ COME(b,w)] 

 

So, exh(11) simply means that John or Bill come. We see that exhaustivization does 

not have any effect in this case. Yes is a full answer to a yes/no question. By Quality, 

we derive that B knows that John or Bill came, and no clausal implicatures will be 

derived, because we cannot make further assumptions about what B knows or doesn’t 

know (B gave a full answer, hence B knows it, and that’s it).    

 

Let us do the same example, but with the answer No. 

 

(13) A: Did John or Bill come? 

            B: No 

 

P= ABS(did john or bill come?) ~> λw[COME(j,w)∨ COME(b,w)]  

T1=  No  ~> λP[w0∉P]; P is a variable of type <s,t> 

T2=  BE(T1) = λTλw[T(λv[v=w])]( λP[w0∉P]) = λw[λP[w0∉P](λv[v=w])] = λw[w0∉ 

(λv[v=w])] = λw[w0∉{w}] = W-{w0} 

 

Exh(13) = w0∉λw[COME(j,w)∨ COME(b,w)] ∧  

                 ∀Q[[w0∉Q ∧Q ⊆ λw[COME(j,w)∨ COME(b,w)]] →  

       maxQ ≤ max((W-{w0})∩λw[COME(j,w)∨ COME(b,w)])]] 

 

The first main conjunct of Exh(13) states that w0∉λw[COME(j,w)∨ COME(b,w)]. All 

subsets Q of W which don’t include w0 are not join semilattices. Hence the second 

main conjunct of exh(13) is trivially true, and exh(13) reduces to: 
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Exh(13) = w0∉λw[COME(j,w)∨ COME(b,w)] 

 

So, exh(13) simply means that it is not he case that John or Bill come. We see that 

exhaustivization does not have any effect in this case either. No is a full answer to a 

yes/no question, and no clausal implicatures will be derived.  

 

I end this section with a re-discussion of the conditional example (26) from chapter 2, 

section 2.3, which is repeated as (14) below. First I want to show that as Groenendijk 

and Stokhof’s formulation, our reformulation of exhaustivity also captures the 

implicature which strengthens a conditional to a bi-conditional.  

 

(14) A: Does John come? 

            B: If Mary comes. 

 

P= ABS(does john come?) ~> λwCOME(j,w)  

T1=  if mary comes ~> λP[λwCOME(m,w) ⊆ P] 

T2=  BE(T1) = λTλw[T(λv[v=w])](λP[λuCOME(m,u) ⊆ P]) = 

λw[(λP[λwCOME(m,w) ⊆ P]) (λv[v=w])] = λw[λuCOME(m,u) ⊆ (λv[v=w])] = 

λw[λuCOME(m,u) ⊆ {w}] = λw[λuCOME(m,u) ⊆ {w}] = λwCOME(m,w) 

 

Exh(14) = [λwCOME(m,w) ⊆ λwCOME(j,w)] ∧ 

                 ∀Q[[[λwCOME(m,w) ⊆ Q]∧Q ⊆ λwCOME(j,w)]  

                                                     → maxQ ≤ max(λwCOME(m,w) ∩ λwCOME(j,w))] 
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The first main conjunct of exh(14) states that [λwCOME(m,w) ⊆ λwCOME(j,w)], 

hence (λwCOME(m,w) ∩ λwCOME(j,w)) = λwCOME(m,w), and exh(14) reduces 

to:  

 

Exh(14) = [λwCOME(m,w) ⊆ λwCOME(j,w)] ∧ 

                 ∀Q[[[λwCOME(m,w) ⊆ Q]∧Q ⊆ λwCOME(j,w)] → 

                                                                                       maxQ ≤ max(λwCOME(m,w))]  

 

Let us assume that λwCOME(m,w) ⊆ λwCOME(j,w) holds (i.e. if Mary comes, John 

comes), and let us distinguish 3 possible cases: 

 

First case:  

w0∈λwCOME(m,w) and w0∈λwCOME(j,w) 

max(λwCOME(m,w)) = w0

We look at every subset of worlds Q which is a both a subset of λwCOME(j,w) and a 

superset of λwCOME(m,w). Because w0∈λwCOME(j,w) and w0∈λwCOME(j,w), for 

every Q, w0∈Q, and for every Q, maxQ=w0. w0 ≤ w0 , and exh(14) is true in this case. 

 

Second case:  

w0∉λwCOME(m,w) and w0∉λwCOME(j,w) 

max(λwCOME(m,w)) = ⊥ 

We look at every set of worlds Q which is both a subset of λwCOME(j,w) and a 

superset of λwCOME(m,w). Because w0∉λwCOME(m,w) and w0∉λwCOME(j,w), 

for every Q, w0∉Q. Since we look only at subsets Q which are join semilattices (i.e. 
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Q’s which contain w0), and there are none, the second main conjunct of exh(14) is 

trivially true, and exh(14) is true in this case as well. 

 

Third case:  

w0∉λwCOME(m,w) and w0∈λwCOME(j,w) 

max(λwCOME(m,w)) = ⊥ 

We look at every set of worlds Q which is a both a subset of λwCOME(j,w) and a 

superset of λwCOME(m,w). Because w0∉λwCOME(m,w) and w0∈λwCOME(j,w), 

for some subsets Q, w0∈Q, and for some subsets Q, w0∉Q. We look at the Q’s which 

are join semilattices (i.e. those who include w0). It is clear that the sentence is false in 

this case,  it is not the case that w0 ≤ ⊥. 

  

The exhaustivization of (14) is equivalent to Mary comes if and only if John comes.  

 

Let us turn now to the clausal implicatures. A asked whether John comes. B answered 

that John comes, if Mary comes. Even after exhaustivization, B’s answer doesn’t 

supply A with the answer. From this fact we infer that B doesn’t know if John comes. 

By Quality we infer that B knows that John comes if Mary comes and that Mary 

comes if John comes. We can safely conclude that B also doesn’t know whether Mary 

comes. 
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6.2 Grice’s ‘holiday in France’ example revisited 

 

Our discussion of Quantity implicatures started with the following example: 

 

A holiday in France (Grice 1975, 51-52) 

A is planning with B an itinerary for a holiday in France. Both know that A wants to 

see his friend C, if to do so would not involve too great a prolongation of his journey: 

 

A: Where does C live? 

B: Somewhere in the south of France. 

 

(Gloss: There is no reason to suppose that B is opting out [from the Cooperative 

Principle]; his answer is, as he well knows, less informative than is required to meet 

A’s needs. This infringement of the first maxim of Quantity can be explained only by 

the supposition that B is aware that to be more informative would be to say something 

that infringed the maxim of Quality, ‘Don’t say what you lack adequate evidence for’,  

so B implicates that he does not know in which town C lives.) 

 

It is clear that exhaustivization won’t help us in deriving the implicature in this case. 

All exhaustivity can do is to calculate the inference that C lives only in the South of 

France, and nowhere else. So, how should we analyze this example if we think that 

the Quantity maxim does not exist? I argue that the Quantity maxim is not needed 

here, what we need is just common sense.  
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The question where does C live? has a very vague interpretation. Does it inquire about 

an exact address? a town? a country? a continent? The context specifies the level of 

finegraindedness that is needed. In the context introduced by Grice, it is clear that the 

reply given by B does not answer A’s question. So, A can justly infer that either B 

does not know where exactly C lives, or that he knows, but is unwilling to give this 

information. In a context where where refers to large areas, such as regions, countries 

etc. this inference will not rise. 

 

So again, it is Quality that is at stake, not Quantity. In Grice’s example, B’s answer is 

not an answer to the question. Hence we use common sense to derive conclusions 

from that. We do not use a maxim of Quantity to compare the information content of 

statements uttered with statements not uttered. Such a maxim is not needed. 

 

To sum up, we stipulate a maxim of Quality for question answering: “Answer the 

question!”, and a semantic operator of exhaustivity. The maxim of Quality for 

question answering is in the spirit of Hintikka (1986) who notes that the Gricean 

maxims of Quantity, Quality and Relation apply most naturally and most directly to 

answers to questions. Exhaustivity is a device which makes it easier for speakers to 

comply with the maxim of Quality for question answering. It strengthens the answers 

given in a certain way, and it is responsible for the inferences which were labeled 

‘strong quantity implicatures’ or ‘scalar implicatures’. In other words: Quality 

requires the answerer to give a complete answer to the question. When the statement 

uttered doesn’t all by itself, the questioner can assume that the answerer meant a 

strengthened version of the statement uttered which does provide a complete answer, 

if such a strengthening with exh is readily available. If even this doesn’t help, the 
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questioner must assume that the answer violates Quality. Unlike for statements, this 

doesn’t make the answerer automatically uncooperative. It only means that she 

doesn’t give a qualitatively acceptable answer. The questioner can infer in this case 

that the answerer doesn’t know the (complete) answer, and her statement is either 

interpreted as an expression of that fact (hence the ‘weak Quantity implicatures’), or 

as an expression of what she does know, in other words: a complete answer to a 

different question (my adviser reports that this was a well established strategy during 

the many oral exams that he was subjected to during his studies with Jeroen 

Groenendijk and Martin Stokhof). 
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Chapter 7 

Some Notes on Further Issues Related to Exhaustivity and 

Scalar Implicatures 

 

 

7.1 Exhaustivity in pair-list answers  

 

Until now we have discussed exhaustiveness in one-place constituent questions and 

yes/no questions. But exhaustiveness shows up also in two-place constituent 

questions, such as in (1).  

 

(1) Who kissed who? 

Sarah and John (kissed) Bill; Bill (kissed) John 

 

On the exhaustive interpretation, the answer in (1) states that the kissing relation 

includes only the following three pairs: <Sarah, Bill>, <John, Bill>, <Bill, John>.  

 

I will here briefly suggest how the framework can be extended to these cases. I follow 

Groenendijk and Stokhof (1984b), and assume that the abstract of an n-place 

constituent question is an n-place relation, and that a ‘single’ short answer to such a 

question is an n-tuple of terms (for example, <Sarah and John, Bill> or <Bill, John>).  

 

I take it that the answer Sarah and John – Bill; Bill – John is a list of two partial 

answers. I assume that exhaustivization is done globally on the whole list. I.e. 
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exhaustivization in (1) adds the information that the sum of kissers is Sarah, John and 

Bill, and that the sum of ‘kissees’ is Bill and John.  

 

Before analyzing (1) in detail let me define a notion of summing a set of pairs.  

 

(2) Let T = {<p1, q1>, < p2, q2>,…. <pn,qn>}. ΣT = <V{p1,..pn), V{q1,..qn)> 

 

(3) <p1, q1> v <p2, q2> iff  p1 v p2 and q1 v q2 

       

(4) Let P and Q be variables ranging over sets of the form *X×*X for some 

      X⊆ATOM.  

Let t1,… tn be a list of n pairs of terms. We associate with each ti two 

interpretations. tARG of type e×e and tPRED of type <e,<e,t>>.   

Let Ti be variables on pairs of type (e×e)×(<e,<e,t>>). 

If α∈EXP(e×e)×(<e,<e,t>>) and  vαb = <T,P >, then vα1b = T and vα2b = P. 

 

exh = λT1…λTnλP[P(T1
1)∧… ∧P(Tn

1)∧∀Q[[Q(T1
1)∧… ∧Q(Tn

1)∧Q ⊆ P] 

                     → ΣQ v Σ((T1
2∪…∪Tn

2)∩P)] 

 

(Again, I don’t generalize the definition to generalized quantifiers here.) 

 

Let us now analyze example (1):  

 

 

 205



(1) Who kissed who? 

 Sarah and John (kissed) Bill; Bill (kissed) John 

 

P= ABS(who kissed who?) ~> λxλy*KISS(x,y) 

T1
1= sarah and john, bill ~> <sVj, b> 

T1
2= sarah and john, bill  ~> {<sVj, b>}  

T2
1= bill, john ~> <b, j> 

T2
2= bill, john =  {<b, j>} 

 

P(T1
1) = *KISS(sVj,b) 

P(T2
1) = *KISS(b,j) 

T1
2∪T2

2 = {<sVj, b>}∪ {<b, j>} = {<sVj, b>, <b, j>} 

Since  {<sVj, b>, <b, j>}⊆ λxλy*KISS(x,y),  

(T1
2∪…∪Tn

2)∩P = {<sVj, b>, <b, j>} 

Σ((T1
2∪…∪Tn

2)∩P) = <sVjVb, bVj> 

 

Exh(1) = [*KISS(sVj,b) ∧ *KISS(b,j)] ∧ 

                ∀Q[[Q(sVj,b) ∧ Q(b,j) ∧Q ⊆ λxλy*KISS(x,y)] → ΣQ v <sVjVb, bVj> 

 

In words: Sarah and John kissed Bill and Bill kissed John, and for every subset of the 

kissing relation that includes Sarah, John and Bill as kissers and Bill and John as 

kissees, the sum of kissers is a part of Sarah, John and Bill, and the sum of kissees is a 

part of Bill and John. 

 206



 

Exh(1) means that Sarah and John kissed Bill, Bill kissed John and no one else kissed 

anyone. 

 

Let us do now a more complex example:  

 

(5) How many babies did each politician kiss? 

Sharon – two, Bibi – seven  

 

The question in (5) is not a two place constituent question, however it has a pair list 

reading, and exhaustivization works much the same as in the previous example.  

The answer in (5), when understood exhaustively, means that Sharon kissed exactly 2 

babies, Bibi kissed exactly seven babies, and no other politician kissed babies. Again, 

I assume that exhaustivization is global on the list, and adds the information that the 

sum of politician baby kissers is Sharon and Bibi, and that at most 9 (2+7) babies 

were kissed by a politician. 

 

Example (5) involves pairs of individuals and numerals. I assume that the Σ operation 

on numerals is summing.  

 

I do not know how exactly the pair-list reading of the question in (5) should be 

analyzed. For simplicity, I’ll assume it is equivalent to a two place constituent 

question i.e. as if there was a which instead of the each (Groenendijk and Stokhof 

1984b argue for such an analysis). 
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P= ABS(How many babies did each politician kiss?) ~>  

λxλn[*POLITICIAN(x) ∧|λy[*BABY(y) ∧*KISS(x,y)]| ≥ n]  

T1
1= sharon, two ~> <s, 2> 

T1
2= sharon, two  ~> {<s, 2>}  

T2
1= bibi, seven ~> <b,7> 

T2
2= bibi, seven =  {<b, 7>} 

 

P(T1
1) = λxλn[*POLITICIAN(x) ∧|λy[*BABY(y) ∧*KISS(x,y)]| ≥ n]<s, 2> =  

*POLITICIAN(s) ∧ |λy[*BABY(y) ∧*KISS(s,y)]| ≥ 2 

P(T2
1) = *POLITICIAN(b) ∧ |λy[*BABY(y) ∧*KISS(b,y)]| ≥ 7 

T1
2∪T2

2 = {<s, 2>}∪ {<b, 7>} = {<s, 2>, <b, 7>} 

Since  {<s, 2>, <b, 7>}⊆ P,  

(T1
2∪…∪Tn

2)∩P = {<s, 2>, <b, 7>} 

Σ((T1
2∪…∪Tn

2)∩P) = <sVb, 9> 

 

Exh(5) = [*POLITICIAN(s) ∧ |λy[*BABY(y) ∧*KISS(s,y)]| ≥ 2 ∧  

                *POLITICIAN(b) ∧ |λy[*BABY(y) ∧*KISS(b,y)]| ≥ 7] ∧  

                 ∀Q[[Q(<s,2>) ∧ Q(<b,7>) ∧ Q ⊆ λxλn[*POLITICIAN(x) ∧  

                 |λy[*BABY(y) ∧*KISS(x,y)]| ≥ n] → ΣQ v <sVb, 9> 

 

In words: Sharon is a politician that kissed at least two babies, and Bibi is a politician 

that kissed at least seven babies, and for every subset of pairs consisting of a politician 

and a number of babies kissed by him/her and which includes the pairs <Sharon, 2> 
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and <Bibi, 7>, the sum of the politicians is Sharon and Bibi and the sum of babies 

kissed is 9. 

 

Exh(5) means that Sharon kissed exactly 2 babies and Bibi kissed exactly 7 babies, 

and that no other politician kissed a baby. 

 

I leave it for further research how the formulation of exh in (3) should be generalized 

to cover more complicated cases. Consider for example (6): 

 

(6) How many babies did each politician kiss? 

Sharon and Barak – three, Bibi – seven  

 

(6) is ambiguous between a collective and a distributive interpretation. On the 

collective interpretation, Sharon and Barak kiss 3 babies between them, on the 

distributive interpretation Sharon and Barak kiss 3 babies each. The exhaustivization 

of the collective interpretation works the same as in example (5); the number of 

babies kissed is at most 10. Whereas on the exhaustive interpretation of the 

distributive case the number of babies kissed is at most 13 (the summing of babies is 

not 3+7, but 3×2+7) 

 

 

7.2 Exhaustivity in questions   

 

Not only declarative sentences have implicatures. The question in (7) can be 

understood as asking who has exactly 2 children: 
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(7) Who has [two]F children? 

No one. Everyone has either less than two or more than two.  

 

If scalar implicatures are exhaustiveness effects, and if exhaustiveness is an 

answerhood constraint, then how come questions can have scalar implicatures?  

 

I will here tentatively sketch an approach to this phenomenon. According to 

‘alternative semantics’ theories of focus (see Rooth 1985, 1992, 1996), declarative 

sentences have, besides their ordinary semantic values, also “focus semantic values”. 

The focus semantic value is the set of all propositions obtained by replacing each 

focus with  alternatives of the same type.  Kadmon (2001) argues that not only 

declarative sentences, but also questions have focus semantic values. For example, the 

focus on two in (7) signals that the speaker is choosing the question “who has two 

children?” out of a set of alternative questions, questions of the form “who has n 

children?”  

 

Roberts (1996b) sees focus as essentially a discourse regulating device (see also 

Schwarzschild 1999). On Roberts theory, the representation of the context includes 

not only the common ground but also the collection of questions that are assumed to 

be under discussion, and have not yet been answered. Roberts assumes that the 

general constraint on the use of focus is that the focus semantic value of a declarative 

sentence must be identical to the ordinary semantic value of the last question under 

discussion (QUD).  
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Roberts assumes that each utterance in the discourse (be that a statement or a 

question) is related to a preceding utterance. If it is a statement, it must give a partial 

answer to the last QUD. If it is a question, it must be a sub-question of the last QUD 

(i.e. a complete answer to it contextually entails a partial answer to the last QUD).   

 

It may be that exhaustivity is triggered not only by the question/answer pairs, but also 

by question/sub-question pairs. The question in (7), Who has [two]F children? is a 

sub-question of Who has how many children?  

 

Essentially, I analyze this case as a two place constituent question which is 

‘answered’ by a one place constituent question. 

 

(8) Who has how many children? 

Who has [two]F children? 

 

I assume that exh in this case is a relation between the abstract of a two-place 

constituent question and the ‘short answer’<who, two>. I take it that who is 

interpreted as a free variable, x, which will be bound by a λ operator, from the 

“outside”. 

 

exh = λxλTλP[P(T1) ∧ ∀Q[[Q(T1) ∧Q ⊆ P] → ΣQ v Σ(T2∩P)] 

 

P= ABS(who has how many children?) ~> λxλn|λy[*CHILD(y) ∧*HAVE(x,y)]| ≥ n  

T1= <who, two> ~>  <x, 2>  

T2= <who, two> ~>  {<x, 2>}                                                    
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P(T1) = [|λy[*CHILD(y) ∧*HAVE(x,y)]| ≥ 2] 

Since  {<x, 2>}⊆ P,   

T2∩P = {<x,2>} and  Σ(T2∩P) = <x,2> 

 

exh(8) = λx{|λy[*CHILD(y) ∧*HAVE(x,y)]| ≥ 2 ∧  

               ∀Q[[Q(<x,2>) ∧ Q ⊆ λxλn|λy[*CHILD(y) ∧*HAVE(x,y)]| ≥ n] →   

                                                                                                                   ΣQ ≤ <x, 2>]}  

 

In words: the set of x’s such that: x has (at least) 2 children, and for every subset Q of 

pairs consisting of x and a number of children (s)he has, and which includes the pair    

<x, 2>,  the sum of Q is part of x and the sum of the number of children is smaller or 

equal to 2.   

 

Exh(8) is the set {x: x has exactly 2 children}, which is the abstract of the question 

who has exactly 2 children? 

 

 

7.3 Scalar implicatures out of the blue  

 

Consider the following sentences: 

 

(9) Mary has 3 children 

(10) Mary has exactly 3 children 

(11) Mary has at least 3 children 

(12) Mary has at most 3 children 
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Standard introduction to semantics and/or pragmatics text books will probably tell 

you that although (9) conveys (10) in most contexts, it means (11), and 

conversationally implicates (12).  

 

According to the theory of implicatures sketched in this dissertation, a sentence does 

not simply have a scalar implicature. (9) may or may not be interpreted as (10), and 

this (largely) depends on the question it answers. For example, if we exhaustivize (9) 

relative to the question how many children does Mary have? we’ll get the 

interpretation that Mary has exactly 3 children. If we exhaustivize (9) relative to the 

question who has 3 children? We’ll get the interpretation that only Mary has 3 

children, and if we exhaustivize (9) relative to Does Mary have 3 children? 

exhaustivization would not add anything. But what if (9) does not answer any 

question? What if (9) is the first utterance in discourse? Consider, for example (13).  

 

(13) Mary has 3 children. They are cute. 

 

Kadmon (2001) argues that in order to satisfy the uniqueness condition on the definite 

pronoun, we accommodate a scalar implicature, even in contexts were such an 

implicature is not independently triggered. How can we interpret this fact in our 

theory? 

 

We may adopt a radical underspecification theory of meaning. Let us associate with 

each declarative sentence not only one meaning, but a set of meanings – the set of all 

possible exhaustivizations of that sentence. I.e. the meaning of a sentence is 
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determined by the set of questions which it can answer. As the discourse continues, 

we may get rid of meanings which are no longer compatible with the information 

accumulated . We may analyze (13) as follows. Initially, we associate with (13) (at 

least) 4 interpretation: Mary has 3 children, Only [Mary] has at least 3 children, Mary 

has only [3] children, Mary has only [3 children]. The definite pronoun they requires a 

unique reference, hence we end up with the interpretations that put 3 in the scope of 

only. Of course, more can be said about this. 
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Chapter 8  

Conclusion 

 

 

The ‘prime directive’ of the researches in the Gricean tradition, has mostly been: 

“Keep your semantics extremely thin, and try as hard as you can to explain as much 

as you think you can with (your own version of) Grice’s conversational maxims” 

(see for example, Harnish 1976, Sadock 1978, 1981, 1984, Atlas and Levinson 1981, 

Horn 1984). This approach is sometimes called radical pragmatics (although, as 

Levinson 1983 remarks, the term radical semantics might be more appropriate). 

Horn’s theory of scalar implicatures is a model example for radical pragmaticists. I 

have argued, in the bulk of this dissertation, that such an approach to scalar 

implicatures is wrong, and that the strong interpretations attributed to the application 

of some version of Grice’s first maxim of Quantity, are available through the semantic 

operation of exhaustivization.  

 

We have replaced the Grice/Horn theory of Quantity implicatures with a theory which 

consists of: 

 

1. A strong maxim of Quality for questions: “Answer the question!” 

2. An exhaustivization schema which exhaustivizes the meaning of a statement 

relative to a question. 
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We have made the assumption that exhaustivization is generally available and can be 

used as a strategy to satisfy the strong Quality maxim for questions. 

 

I have shown this theory to be superior to the neo-Gricean theories of scalar 

implicatures (Horn 1972, 1984, 1989, Gazdar 1979, Atlas and Levinson 1981, 

Levinson 1983, 2000, Gamut 1991, Matsumoto 1995) in several ways: 

 

1. We do without the maxim of Quantity which over-generates wildly non 

existing implicatures. 

2. We do not need to stipulate a strengthening process for ‘weak quantity 

implicatures’. 

3. We do not need to stipulate Horn scales such as <Mary, John and Mary> and 

<or, and>, and then explain away why scales such as <Mary, only Mary> and 

<or, exclusive or> don’t exist. The semantics of the exhaustivity operator 

refers to domains which form join semilattices, and this restriction explains 

why we find the Horn scales we find, when we find them. 

4. The facts about implicature inheritance and suspension/cancellation (‘the 

projection problem for scalar implicatures’) come out naturally within our 

theory.  

 

I have also shown that the ‘weak Quantity implicatures’ (implicatures about the lack 

of knowledge of the answerer) can be derived without reference to the Quantity 

maxim. 
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Exhaustivization had its start in Groenendijk and Stokhof’s (Groenendijk and Stokhof 

1984b) theory of questions and their operation of exh. I have shown that my operation 

is superior to theirs: 

 

1. My operation works also for plural NP’s (not only for singular NP’s).  

2. My operation naturally generalizes to ordered domains that Groenendijk and 

Stokhof did not cover. 

 

Unlike Groenendijk and Stokhof, I do not assume that exh is a part of the meaning of 

a statement as an answer to the question. I assume that exh is an operation which is 

triggered by the question/answer relation due to the strong maxim of Quality for 

questions. 
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