Pre-parsing Efficiently - MA Thesis

Uriel Cohen Priva

September 12, 2006

Abstract

This work tries to model human parsing by assuming that some part of the parsing
process is designed to complete its work in linear complexity. This part of the parser,
the pre-parser, produces underspecified structure of which the correct parse tree can be
re-built by subsequent modules. I demonstrate how such an assumption predicts a range
of complex processing difficulties phenomena such as garden path and right association,

while assuming little else about the parser.

Acknowledgments

I would like to thank my adviser, Fred Landman, whose guidance and wise criticism
has led me through the mess of confused and confusing ideas that preceded this work. His
precise observations, his devotion to the process, and most importantly his willingness to
both accept and subdue my somewhat stubborn and alien approach to linguistics, have

made this work possible.

I would also like to thank my thesis committee, Susan Rothstein and Alexander Grosu
for their invaluable remarks, and on their vital role in making this thesis readable to fellow

linguists. I am sorry I have made you read those preliminary versions, I really am.

I am grateful to Mira Ariel for believing in me during my years in the department, for

always letting me think I can do better, and for explaining these views to others.

I am indebted to Nirit Kadmon for showing me I could enjoy being a teaching assistant.

This realization had a major impact on my decision to proceed to study for a PhD.

To Tali Siloni and Outi Bat-El I owe my interest in theoretical linguistics. They have
successfully nurtured both my excitement about the field and my criticism of it. I thank
them for teaching me how theory should be built, what’s important and what’s argumen-

tative.

Many thanks go to Tal Kedar, with whom I discussed this theory from its preliminary
stages, all the way through its final outcome. His helpful remarks have helped me overcome

many obstacles. For this and for his companionship, I am thankful.

This is the best place to express my gratitude to Roy Rosemarin, whose invaluable
remarks and support have let me bring the thesis to its final state. I apologize for all those

lost coffee meetings hours.

I am extremely grateful to my parents, Yael and Gabriel Cohen Priva, who have managed
to accept I am doing what I desire, and for not tiring of asking me to explain what this

thesis is all about.

Finally, to the ‘A’s of my life, for the good moments of these last few year, I give my

love. ..
ii

To My Parents

iii

Contents

1.3 Roadmap|.

2 Prefimg o3
2.1 Objectives| e

[2.1.2 Processing Ditficulties and Right Association|
[2.1.3 ‘On-line’ Parsing|,

[2.1.4 Complexity|
[2.1.5 Modularity]

[2.1.6 Deterministic Parsing and Assertion Sets|

2.2 Formal Layout|

[3.2.2 Weinberg 1993

4 My Parser|

4.1 Implications on Implementation|.

[4.1.1 Implementing Complexity|

[4.1.2 Tmplementing Modularity|

iv

43 Data Overview] 64
[4.3.1 Explaining Garden Path Sentences| 64

[4.3.2 The Desired Order ot Complements| 67

[4.3.3 A Swing at a Tighter Parser| 71

[4.3.4 Explaining Right Association| 72

[4.3.5 On-line fixing| 74

44 Desideratal Lo 76
[4.4.1 Preserving Syntactic Notions| 76

[4.4.2 Dealing with SOV languages] 76

78
|Bibliography| 79

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 1

1 Introduction

1.1 The Human Parser

In the field of linguistics, it is rather surprising that the notion of the ‘human parser’
is not equivalent to that of ‘language’. After all, every first year student of linguistics is
told at the very first introductory course that the greatest change that modern linguistics
represents is in trying to model language not as something that lies outside human cogni-
tion, but rather as a projection of a cognitive device, our language faculty. In other words,
the study of human language should be equivalent to the study of the human parser:
every claim we make about language is a claim about the way we utter and understand
sentences. However, the modern study of language has also made a distinction between
langue and parole, competence and performance, and the distinction between the two -
the fact that our ability to judge sentence grammaticality is different from our ability to

utter or construct sentences - has been used to differentiate between the two terms.

Kimball (1973]) demonstrates that the difference between grammatical and ‘acceptable’
creates four sets of sentences: those that are both grammatical and acceptable, such
as , those that are grammatical but unacceptableﬂ such as , those that are
ungrammatical but acceptable such as , and those which are ungrammatical and

unacceptable, such as (1}{d)).

(1) (a) It is raining.
(b) Tom figured that that Susan wanted to take the cat out bothered Batsy out.
(¢) They am running

(d) Tom and slept the dog.

Kimball does not distinguish here between sentence production and sentence understand-
ing, as is clear from example . I would like to explain these distinctions by focusing
more on sentence understanding, rather than production. Let us take two imaginary ques-
tionnaires. The first questionnaire requires the subject to say whether a sentence, some
content and a context match: the subject has to decide whether the sentence can be used
to express the content in the given context. The second questionnaire gives only the sen-

tence, and requires the subject to say what content the sentence can be used to express in

T find the equivalent examples in Hebrew ungrammatical

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 2

varying contexts. The first questionnaire relates directly to grammaticality tests, the ones
we often use in syntax and semantics. The second relates to what we understand when
we hear or read a sentence: speakers may fail to understand a grammatical sentence, or
understand it only after a relatively long time; speakers may miss some of the meanings in
an ambiguous sentence; finally, speakers may understand the content of ungrammatical or
partial sentences. In cases where a speaker does not understand a grammatical sentence,
or does not recognize a possible ambiguity, we witness a shortcoming of the human parser.
A speaker’s ability to understand a partial or ungrammatical sentence demonstrates the
human parser’s ‘robustness’ (a term used in computer science to describe a program’s
ability to handle faulty data). Both the shortcomings of the human parser and its error

recovery ability demonstrate that the parser does have distinct properties.

This work focuses on some of the phenomena that demonstrate the human parser’s
existence: the various difficulties that we encounter when we process certain sentences. I
will deal mainly with the most famous of these phenomena: garden path sentences, but I
will also discuss some less glamorous phenomena that demonstrate processing difficulties,

as well as other parser related peculiarities, such as missing ambiguities.

1.2 Mission and Disclaimer

Many works try to trace the workings of the human parser. The various approaches
differ greatly by what they take for granted and what they try to achieve. Due to these
differences, they differ also on what may be the legitimate means of achieving these objec-
tives, and what phenomena should be account for the given explanation. This work tries
to do the same, but begins by giving up as many assumptions as it can (or so I see it),

and explain as much as it can, without focusing solely on one phenomenon.

To achieve this goal, I will not assume any specific syntactic framework my parser should
model, but rather allow a modular analysis in which the parser can be followed by another
syntactic module, a semantic module, or whatever one may wish to assume follows a
parsing module. From this follows that I do assume a modular view of language. Another
choice I make is to try and model the various limitations the human parser demonstrates
by using computational complexity terms. Such a model may rely on a specific type
of computational model, one that may be very different from the machinery our brain

supplies. However, this should not bother the reader, as I do not try to describe the

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 3

human parser, but rather to model it. Just as syntax does not claim that, say, Merge
has a direct physiological correspondent, my model of the human parser uses a particular
computational model to express the way our brain parses sentences, without tracking down
the exact mechanics the brain uses to realize this behaviour. My work is a formal one,
and tries to model the behaviour of the human parser rather than mimic it. It makes
no assumptions about the machinery provided by our brain and offers no insights about
the actual psychological processes involved. I reduce the human parsing process to its
outcome: meanings conveyed and difficulties encountered. My work tries to model just
those aspects of human parsing. It would be interesting to try to see whether the products
of this work are compatible with psycho-linguistic findings, but this is beyond the scope

of this work.

1.3 Road map

The object of this work is to explain as much as it can using as few assumptions as
possible. The object of research are the many features of the human parser, and the
assumption I make is that the parser tries to correctly come up with structure using very

tight complexity requirements.

In section [2] I describe the objectives and formal framework used to solve this problem.
Section [2.1] draws the objectives of this work, describing the different parsing related
phenomena I wish to explain - different kinds of processing difficulties and shortcomings
- and the assumptions I make when approaching a solution: a modular algorithm that
can resolve structure in linear complexity. In section [2.2] I describe in formal terms the
differences between different kinds of parsers, and translate the notion of tree to that of

dominance order relation, a notion that is used extensively in my work.

Section [3| tracks some of the current work on parsers and processing difficulties. A
reader who is already familiar with similar work may wonder why important works of
psycho-linguistic theory are missing from this section. The reasons are similar to those
mentioned in my disclaimer: this is a formal work and I therefore compare it to other
formal works. I rather focus on two formal approaches: parsing algorithms that rely on

backtracking, and algorithms that manage to do without backtracking.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 4

Section []is the main body of this work. In §4.1]I introduce the way I meet the objectives
of this work, explain the way the complexity and modularity requirements can be met,
and the formal representations of this solution. provides the general outline of an
implementation that relies on the way I meet those objectives. I then demonstrate in
§4.3] how the algorithm manages to explain various processing difficulties. I also show
what further adjustments have to be made so that other processing difficulties can also be
explained, and introduce another possible complexity constraint. In §4.4)I talk about two
goals that are not accomplished in the current implementations: moving syntactic features
such as c-command into the parsing algorithms and explaining processing difficulties in

head final languages.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 5

2 Preliminaries

2.1 Objectives
2.1.1 Garden Paths

Garden path sentences are a class of sentences which are undeniably ‘proper’ syntac-
tically, specify understandable content, but are not parsable - at least not as quickly as
other sentences in the language. The term ‘Garden Path’ is not neutral and refers to the
commonly accepted hypothesis that the reason those sentences are not easily parsable is

as follows:

e The parser does not wait for the sentence to end in order to start building the

sentence structure.

e At some point the parser may entertain two (or more) incompatible alternatives:

that is, future data may prove one of those alternatives to be incorrect.

e The parser does not wait for disambiguating data, but rather chooses one of those

alternatives.

o If future data does indeed prove the choice to be a wrong one, the parser is required

to ‘retrace’ its steps, find the wrong decision, undo it, and try again.

e The retracing process takes effort and time, which causes the measurable cognitive

effect of confusion or increase in response time.

For example, in - perhaps the most famous garden path sentence - the parser cannot
tell when it reaches the word ‘raced’ whether the verb is used in the matrix clause, or in

a reduced relative clause.
(2) ﬂ The horse raced past the barn fell

The parser seems to choose the former over the latter, and when proven wrong at the end
of the sentence, as it encounters the second verb, ‘fell’, it has to go back and ‘choose again’,
which requires the reassignment of the ‘the horse’ as the subject of ‘fell’, lowering ‘raced
...barn’ to be a relative clause modifier of ‘the horse’. This process is either not automatic
or cognitively taxing, and we feel it takes us more time to figure out the correct underlying

structure of the sentence. The term ‘garden path’ therefore correlates to descriptions in

2¢;7 is a commonly accepted way to signal either ‘garden path’ or ‘difficult to process’

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 6

which the parser might make a mistake, and when some error is encountered, an attempt

to backtrack is made, which causes processing difficulties.

However, the description just provided is far from perfect, as there are cases in which we
expect the parser to ‘choose wrong’, but no cognitive effort is encountered. In , ‘Mary’
should be interpreted as the direct object of the verb ‘saw’; and if the parser fails to do so,
a correct interpretation of the sentence would be prohibited. However, that same sentence
can be extended without effort to , in which ‘Mary’ does not serve as the object of
‘saw’, but rather as the subject of the embedded sentence. The difference between this
example and the previous one is probably not due to the size of the reanalyzed part. In (4))
EL we supposedly choose wrong when we attach ‘food’ as the object of ‘eats’: just one word
later we learn that we have made a mistake, and should re-attach ‘food’ as the subject of

‘gets’. Supposedly, this is too late already.

(3) (a) John saw Mary.

(b) John saw Mary dance.

(4) ;When Fred eats food gets thrown

From these cases two main explanatory paths diverge: either we can sometimes retrace
our steps and backtrack, or we can assume that we made no wrong choice: we somehow
did not choose wrong when we assigned ‘Mary’ the role of an object. The first sort of
theories I would label limited backtracking theories, and the latter I would label (after
Marcus (1978))) deterministic theories. Limited backtracking theories deal with defining
the conditions in which backtracking does not cause conscious effort, while deterministic
theories would have to create elaborate explanations to why reanalysis does not actually

occur in these cases.

While all these theories describe the conditions under which garden path occurs, one of
my objectives is to try and explain the data: to provide a mechanism through which garden
path will follow from general principles. Such principles can only be general if they give
rise to more than just the garden path phenomena. rather than merely describe it: such

principles can only be valid if they would explain not only the garden path phenomena.

3 From Ken Barker’s list of garden path sentences, which can be found at

http://www.site.uottawa.ca/ kbarker/garden-path.html

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 7

2.1.2 Processing Difficulties and Right Association

While garden path sentences are usually regarded as the most important phenomenon
among sentences which are not easily processed - mainly since they provide evidence for
the parser’s need to choose one alternative over another - there are at least two other types
of sentences which cause processing difficulties leading either to failure to understand a
seemingly grammatical sentence, or to a significant delay in response times. Those are
center embedding and right association sentences. These sentences are even more puzzling
than garden path sentences, as they are usually unambiguous at every point, and thus do

not require the parser to choose.

Center embedding sentences are interesting because we see no obvious reason that could
explain the tremendous conscious effort required to understand them. Sentence (blia)) is

an example of such a sentence. We would expect the sentence to be an alternative way of
saying (5l{b)), built by combining (5lic) and (5lid]).
(5) (a) ;The boy the girl the dog bit saw shouted

(b) The boy that was seen by the girl that was bitten by the dog shouted.

(¢) The boy the girl saw shouted.

(d) The girl the dog bit saw the boy.

However, for some reason embedding one sentence in this position is parsable, but em-
bedding two sentences in the same position renders the sentence too difficult to parse. In
fact, these sentences are not only difficult for the hearer to process but also for a speaker
to produce, making it difficult to claim they are grammatical. Center embedded sentences
are simply not used by speakers, which contrasts them with the other type I will discuss,

right association sentences.

Kimball (1973)) has described a range of phenomena he attributed to a basic parser’s
tendency to attach new nodes recently processed nodes, a tendency he labeled ‘right

association’:
Terminal symbols optimally associate to the lowest non terminal node

Kimball’s description can be demonstrated by the difficulty encountered when reading

sentences such as (6lfa)). This phenomenon is surprising, as similar sentences where the

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 8

object of the verb is not a clause, such as (6}fb]), sentences where the adverbial is a clause,
such as (6lic) or even the same sentence, uttered with a pause preceding ‘tomorrow’ ,

are not problematic.

(6) (a) ;John will tell the kids he has already bought them a dog tomorrow.
(b) John will tell the kids a story tomorrow.

(c) John will tell the kids he has already bought them a dog when he thinks it’s

appropriate.

(d) John will tell the kids he has already bought them a dog | tomorrowﬁ

Right association effect are more difficult to explain than garden path and center embed-
ding sentences: they are used by speakers (unlike center embedding sentences), and do
not originate in a mistake caused at an earlier stage: the parser has all the data it needs,

but fails to use it. Kimball’s descriptive rule of right association seems an arbitrary one.

I will not try to explain center embedding, although I believe the theory I will present
does contain some leads to the proper explanation of the problem. I will only explain
some right association effects in §4.3.4] but an ideal theory should manage to explain both
problems using similar mechanics. I do consider using principles that cannot be applied

to right association sentences a drawback of some garden path explaining theories.

2.1.3 ‘On-line’ Parsing

Tomital (1987) demonstrates a relatively efficient algorithm for parsing a sentence of
an arbitrary ambiguousﬂ context free grammar. Such an algorithm can provide all the
alternative interpretations of a sentence, and might represent an ideal parser that always
manages to find the correct parse tree if one exists. The three types of processing difficulties

mentioned above demonstrate that the human parser does not belong to this set of parsers.

By giving up on the attempt to achieve this goal, a parser can be more efficient in
parsing most of the sentences, by exercising what is often called in computer science
greedy behaviour. For algorithms, being greedy means trying to make the best choice

given some subset of the information, at the expense of achieving the (best) solution every

4The pause mark (|) follows [Kedar| (2006)) symbols
5That is, one which allows for some prefix of a grammatical sentence to support more than one valid

interpretation.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 9

single time. In parsing theories, acting ‘on-line’ means not delaying a decision for more
information. Theories differ on what is considered ‘delaying’ a decision. A parser need
not be assumed to make a decision for every single piece of input, but evidence shows that
if the parser does indeed delays while waiting for more information it does not wait for
too long: there are sentences (discussed below, in which cause garden path effects
in which the erroneous decision and the end of the sentence are not more than two or
three words apart. It is not surprising that most theories that allow backtracking prohibit
the use of any sort of delay or ‘look-ahead’. In its most strict form, an ‘on-line’ parser is

considered to make every decision right away.

Even if a theory does allow for some sort of delay to occur, the size of this delay window
has to be considered and minimized. The smaller the window, the easier it would be to
disprove the theory, thereby making it more elegant, and in my view, better. The theory I
propose cannot be analyzed in terms of ‘look-ahead’ or ‘on-line’, and replaces those terms

with the broader notion of complexity, discussed in the following section.

2.1.4 Complexity

Much of the research in the field of computer science has to do with the notion of com-
plexity. This notion deals with evaluating different algorithms, all capable of performing
some task. The evaluation is based on comparison of the processing time and storage
space requirements of every algorithm in the comparison set, where processing time refers
to the number of fixed time steps the algorithm takes to reach its final state, and storage
space usually refers to the maximum number of fixed size items the algorithm keeps in
memory until it reaches its final state. The comparison is based on the length of the input
n. One of the most commonly used notations in this field, is the Big Omicron (or Big O)
notation, as defined in Knuth! (1976). The O notation defines a set of n based functions
(denoted by ‘g(n)’), such that some function we choose (denoted by ‘f(n)’) is bigger than
or equal to these functions, for every input large enough (every input which has more than

the first ‘ng’ elements), disregarding constant multipliers (denoted by ‘C”).

O(f(n)) denotes the set of all g(n) such that there exist positive constants C

and ng with |[g(n)| < C - (n) for all n > ny

This means that the complexity of an algorithm f(n), O(f(n)), is the set of all algorithms

g(n) in a comparison set, that are at most in a constant way faster / take less space than

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 10

f(n). For example, the set of functions define by f(n) = n? (which means we chose O(n?))
would include:

{g(n) =an®* +bn+c:a,b,ceR}

and other functions (for instance, g(n) = logn). The fact that we can disregard constants
helps us compare algorithms across different machines and programming languages. These
constants may matter if the size of the input is guaranteed to always be small, or if we

compare two algorithms with identical asymptotic complexity.

There are many uses for this notation. For example, when the number of items an
algorithm stores is linearly dependent on the size of the input (that is, if the input doubles,
the number of items doubles) we would say that the space complexity of the algorithm
is O(n) (a reminder: n is the length of the input). If the number of processing steps
an algorithm needs to perform some task is independent of the input size, we would say
the time complexity of the algorithm is O(1). Real life examples for linear time or O(n)
missions include cleaning the floor: the time required to clean the floor would double if the
floor space doubled. Here we can see how ignoring constants can be useful for us. Taking
the mop out of the closet, for instance, is a constant in this example: the more we have
to clean the less significant taking the mop out of the closer becomes. Real life example
of an O(1) task may be tying shoelaces: no matter how long the shoelaces may be, tying
them takes a fixed amount of time (of course, if we defined the length of the input to be

the number of shoelaces, this task would take linear time to complete).

Well, most theoretical linguists would ask, what has that got to do with us? I believe
this is a very good question. Most linguistic theories are not defined in terms of processing
time or storage requirements: they are abstract, independent of the underlying mechanism,
and for a good reason: we do not know enough about the mechanism: our mind. But
when we come to theoretical discussions about parsing, this view is no longer supportable.
The human parser’s “on-line” behaviour has been explained as a short term memory
constraint. [Kimball| (1973) used the same terminology to account for right association.
Moreover, the parser has been explicitly described, in (Pritchett, 1992} |Weinberg), 1993,
1999)) for instance, as trying to satisfy all the constraints for every input word as soon as it
is encountered, and does not try to calculate the optimal solution for the entire input, what
we have labeled above as a greedy behaviour: a complexity driven approach in computer

science. Moving from vague terms of ‘driven by restricted storage’ to an actual analysis

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 11
of how is this storage limited is therefore necessary.

Surprisingly enough, the use of these terms for describing the motivations for the oth-
erwise inexplainable behaviour of the human parser have remained outside the actual
descriptions of such suggestions. Actual processing and storage requirements have not
been discussed, and the different parsers have not been compared on this basis. Even
when we analyze such solutions, it is usually very difficult to understand how complex
the algorithm actually is. [Pritchett[s (1992)) parser description, for instance, allows the
parser to move from every structure to every structure (even in a non monotonic fashion),
the only constraint being his On Line Locality Constraint (OLLC): “The target position
(if any) assumed by a constituent must be governed or dominated by its source position (if
any), otherwise attachment is impossible for the automatic Human Sentence Processor”.
Not a word about how these structures come to be considered. I find it therefore essential
to try and delve into this prospect of parser evaluation, by trying to assess how difficult it
is to identify the structure of sentences, starting with the lowest possible time and space

complexity.

When discussing complexity, one needs to take into account some computational model
framework. An algorithm that takes O(n) in the commonly assumed model may take
O(n?) in a Turing machine model. In a model in which an infinite number of instructions
can be carried out ‘at once’, the above mentioned [Tomita’s (1987) model would take only
linear time to compute all the alternatives. The model I will use to define complexity terms
is the one most commonly used in computer science today: a Random Access Machine
(RAM) model: a single instruction can be carried out at every given time, infinite storage
is available for every instruction, and instructions include setting the value of every storage
component to some value, or compare its value to some other storage component. This
makes the RAM model very similar to today’s computers, but perhaps very different from

the brain.

Time complexity The time complexity of a parser cannot drop below O(n), since by
the time the parser finishes processing a sentence, it has at the very least read every word.
Attaching every node where it should be attached may well take more than that, but a

preliminary model should, I think, try to achieve an O(n) time complexity.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 12

Space complexity Bounding the space complexity is a much more intriguing question.
Marcus’s (1978) parser, one of the only parsers for which an algorithm has been provided,
uses O(1) storage for syntactic structures (that is, the storage size is finite and independent
of the input length), but keeps the states of every node to which more elements can still be
attached. The number of such states is the height of the syntactic tree, and since syntactic
trees grow in an uneven manner (new words are usually attached to the last sentence or
noun phrase as described in Kimballls (1973) right association guideline), we cannot
guarantee the number of saved states to be less than O(n), which brings Marcus’s parser
to a total of O(n). This bound cannot be reduced for parsers which allow reanalysis, as
a reanalysis process requires to “remember” words which have already been processed -
possibly all the way up to the top node. Moreover, some element of syntax or semantics
requires us to keep O(n) previously processed elements: in sentences such as @, the
emphasized element should be attached to the VP of the matrix clause for the sentence
to make sense, which means that verbs that have already been processed must still be
available for further consideration, an arbitrary number of clauses away from the last

clause (“Mary to ask” can be repeated as many times as we want).
(7) Dan told Mary to ask Jane to invite John to the party, rather than do it himself.

We cannot simply ‘forget’ what has already been processed. This means that if the parser
I propose uses a linear amount of storage, it will not exceed the amount of storage already
used. A model in which the space complexity is O(n) is therefore a rather lean model,
one which I find sufficient. However, a O(1) model would be more compact and should be

achieved if possible (see discussion in §4.3.2{ and §4.3.4)).

These bounds suggest that any syntactic process whose space and time complexity do
not exceed O(n) is at least as efficient as any parser we have encountered so far. My
objective would therefore be not to exceed these bounds when trying to describe a parsing

algorithm.

2.1.5 Modularity

It has generally been assumed, that syntactic processes cannot and should not handle
complex semantic and pragmatic representations. Based on this assumption, it is clear
that we should not expect syntax to resolve ambiguities such as in the following examples.

In ‘from Italy’ can be attached to the verb as an argument, or to the noun as an adjunct

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 13

- the decision relies heavily on what we know already about John. In (9)1) we attach ‘using
FEudora’ to the lower verb because it makes more sense, while in , we attach ‘on the
phone’ to the higher verb for similar reasons. Under the modularity assumption, we would
have to rule out any theory in which it is syntax that determines where to attach these

elements.

(8) John has brought shoes from Italy.

1P
/\
NP 1
‘ /\
John 1 VP
‘ /\
has Vv NP
| |
brought N
PN
N PP
‘ A
N from Italy
|
shoes
1P
/\
NP I
‘ /\
John 1 VP
‘ %\
has A% NP PP

brought shoes from Italy
(9) 1. Mary told Dan to mail a letter to Jane using Eudorcﬂ

2. Mary told Dan to mail a letter to Jane on the phone.

Since knowing where to attach these elements requires semantic and pragmatic infor-
mation, we do not expect syntax to be able to decide where the attachment takes place,
and we therefore assume that it does not. Any description of a parser should therefore
include some explanation to what really happens in these circumstances. We have several

options:

1. Syntax passes on every possible structure to the next module. That is, whenever

we encounter an ambiguity, all the alternatives are taken, and each and every one

SFudora is a popular e-mail program

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 14

survives to the ‘surface’: the interface with the next module.

2. The interface between syntax and the next module determines what is the best
attachment site for the new element. Under this analysis, whenever a choice between
two alternatives has to be taken, both options are ‘offered’ to the interface, the

interface selects one, and processing resumes.

3. Syntax passes on an underspecified structure to the next module: a structure which

the next module will extend correctly, using semantic and pragmatic data.

The first option is inconsistent with both our complexity requirement above, and the
nature of the syntactic process in general: it requires syntax to maintain several possible
structures at once. If this were possible, there would be no need for the parser to commit
itself to certain syntactic structures too early - what we assume to cause the Garden Path
phenomena - and the correct tree in right association sentences would be available. What’s
more, the number of possible solutions may grow exponentially: every PP attachment

ambiguity may survive all the way up to the final interpretation.

The second option is more consistent with the current analysis of syntax and with the
garden path phenomena, but is inconsistent with the complexity constraint I chose: every
possible attachment site has to be considered by the interface to be chosen or overruled.
Therefore, the final time complexity will be greater than O(n). This is not to say that
this option is irrelevant or should not be pursued when dealing with the interface between
the currently described algorithm and the next module, but one which I should at least

try to do without.

The third option is appealing, as it seems to allow the creation of a syntactic process
which adheres to both the modularity requirement and the complexity constraint. It
should be noted though, that it makes the algorithm to be described at the very least
‘less than a parser’, as parsers are expected to deliver a structure or a finite number of

complete structures, rather than an underspecified structure.

A question remains: how can some structure be underspecified? A possible idea can
be borrowed from D-Theory (Marcus et al., 1983; Barton and Berwick, 1985; Weinberg,

1993)), although it is not used for this purpose in any of these articles. When we think

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 15

of a parser we imagine it building a tree. Trees, however, can be represented not only
by the immediate dominance relation (‘V P; immediately dominates V;’), but also by a
dominance order relation (see also , in which we may say that some tree node A
dominates some other node B if and only if A dominates the mother of B, or A is the
mother of B. If the immediate dominance relations that represent the two alternatives for

the VP in above are:

Immediate Dominance; =

(VP,V) (VP V) (V,NP) (V,V),
(NP,N1),(Ni,N2),(Na, N),(Ny, PP)

VP——V —>V
NP Ny Ny N
PP

(VP,V) (VP V) (V,NP) (V,V),
(V,PP),(NP,N),(N,N)

Immediate Dominances =

VP——V——>V

N\

NP—N—>N

PP
The following dominance relation can be extended to represent both options:

Dominance = {{(VP,V),(VP,NP),(VP,PP)}

VP
NP PP
To rule out the second alternative, another pair would be added to the dominance relation:

(NP, PP):
P

N

wo>= PP
And to rule out the first alternative, it would be made explicit that (NP, PP) does not

hold:

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 16

While this is not the underspecified structure I will use in my theory, it represents
efficiently how underspecified structure can be used to solve the modality puzzle. Since 1
would like to solve this problem in my parser, I will formulate an alternative that builds

on this idea.

2.1.6 Deterministic Parsing and Assertion Sets

We are already familiar with ambiguous sentences, sentences which may be represented
by two distinct structures. Sentences can also be locally ambiguous. For instance, the
grammar in cannot give rise to more than one interpretation for any sentence, but
sentence prefixes can be ambiguous. can be the prefix of either or .
This does not allow parsers to parse the sentence incrementally one word at a time, and

should either postpone some decisions or allow the parser to undo choices it already made.

(10) (a) S— A

(b) 5 — CBB
(c) A— CBA
(d) A—a
() B—b
(f) C—ec
(11) (a) cb S or S
/,\ ‘
C B B A
. PN
o T
c b
(b) ¢b b S
SN
T
c b b
(¢c) cba

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 17

As I have mentioned before, a parser that deals with these situations must employ
some strategy for such cases. Marcus| (1978) presents the following strategies: explore all
the alternatives using either backtracking or pseudo-parallelism, or postpone the decision
making until enough information is gathered, using what some theories label as look-ahead
in ; this would mean waiting for the next input symbol), and commit itself to every

decision made. [Marcus| uses the term ‘deterministic parsing’ for this strategy.

Parallelism in an ideal parser, processing a sentence one word at a time, would simply
mean that whenever there is more than one option in a given situations, the parser ‘splits’
to two (or more) identical parsers, each following another option. Should any instance
of such a parser reach the end of the sentence and not have a proper parse tree, that
instance would terminate, and its incomplete parse purged. Pseudoparallelism in such an
environment simply means that the ideal behaviour is simulated by copying the state and
storage of the parser before the split occurs, and alternate between the various instances
every step. This option is very wasteful in terms of processing ‘time’, and storage size
(which grows exponentially), but some compact implementations of it manage to effectively
reduce processing time (as in [Tomita (1987)). Backtracking, in essence not very different
from parallelism, means that rather than follow each and every path, the parser picks some
arbitrary option, and follows it until it fails, in which case it traces back its actions to the
place where it last picked an option, and tries the alternatives one by one, until a valid
parse for the entire sentence is encountered. Its advantage over any sort of parallelism
is that it more efficient if the order in which each option is taken is calibrated to the
most common cases. Even in the case of a statistically tuned parser, the result may not
necessarily be the most “statistically plausible” parse, as it will reflect only the earliest
valid choice. Both of these strategies do not correlate with the time complexity constraint

I chose above, and do not match the behaviour of the human parser.

Even though the parallel and backtracking parsers are too strong to describe the human
parser, Marcus/s deterministic class of parsers are not the only alternative to those parsers.
Limited backtracking parser are parsers in which some backtracking mechanism is imple-
mented, but every decision does limit the set of alternatives. These two sets of parsers are
obviously not disjoint: a parser with a finite look-ahead of three words is as powerful as a
limited backtracking parser with ability to undo the last three decisions made. While ev-

ery parser with finite lookahead can be described in terms of limited backtracking, limited

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 18

backtracking parsers can be allowed to manage operations more powerful than undoing a

finite number of decisions.

In an attempt to widen Marcus’s (1978)) determinism following D-theoretic work (Mar-
cus et al., [1983; Barton and Berwick, [1985; |Weinberg, (1993), but refraining from the too
powerful alternatives of backtracking, the very term ‘determinism’ has been formalized as

follows (from Barton and Berwick! (1985)):

An assertion set parser develops its analysis deterministically if changes in its
(global) assertion set are always refinements in the information-theoretic sense

- that is if information is monotonically preserved.

This description of parsing is in terms of information growth: in the initial state we have
asserted nothing: every possibility can be entertained. As information is encountered,
assertions about the outcome are made and some options are made impossible, until at the
final stage we remain with only the valid possibilities EI, but at no time can an assertion
be withdrawn or modified. Determinism in this sense does not by itself guarantee on-
line parsing: a choice can be put into the assertion set after an unbounded amount of
information has been made available, though this would usually mean that we have been
‘cheating’ by evaluating alternatives outside the assertion set: in essence modifying a
temporary assertion set. We can avoid this problem by making sure we do indeed have
just one assertion set. This is the path I will follow in my analysis: a deterministic parser

with a single assertion set.

"Note that this can be easily be used to explain ambiguities: at the end of the possibility elimination

process, we have more than one valid possibility.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 19

2.2 Formal Layout
2.2.1 Dominance Orders and Assertion Sets

Rooted trees, the basic notion used in linguistics to describe syntactic and semantic
representations is a terms borrowed from graph theory, where a tree is a subtype of a
graph. I will start by defining graphs, directed graphs, paths and cycles, notions needed

for the computer science definition of rooted trees, and finish with the definition of tree.

Graphs are used to describe a set of basic elements and a set of pairs of these basic
elements. We call the set of basic elements ‘vertices’, and the set of pairs ‘edges’. The set
of basic elements may be a set of people, and the set of edges may signify the ‘know each
other well’ relation. In the basic definition, the pairwise relation is symmetric: we cannot

use a basic graph to describe the set of people and the ‘has heard of’ relation.
Definition 12. A graph is a pair G = <VG, EG> such that:
1. V is a set of vertices.

2. ECV -V isa set of edges: E C {{v;,v;} : v;,v; € V}.

We will use the shorthand vyv; rather than {v;,v;}.

Directed Graphs are used to describe just those cases in which the relation we wish to
describe is not symmetric, such as ‘has heard of’. In this case, the set of edges will contain
ordered pairs, rather than simple pairs, so that we can correctly indicate that someone
may have heard of someone else, but not the other way around. We will use a function
called indirect to move us from a directed graph into its indirect counterpart. Naturally,
this is not a bijective function, as different directed graphs may map into the same indirect
graph. For instance: the graph made of the set of all people and the ‘saw’ relation, and
the graph made of the same set of people and the ‘was seen by’ relation, map to the same

indirect graph: the set of all people and the ‘saw or was seen by’ relation.
Definition 13. A directed graph is a pair G = <VG, EG> such that:
1. 'V is a set of vertices.

2. ECV xV is a set of edges.

3. We define a surjective function from a directed graph to its undirected counterpart:

indirect (G) = (VE, {{vi,v;} : (vi,v;) € ECV (vj,v;) € EC})

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 20

Paths are used to denote a recursive application of the relation denoted by the set of
edges. We would say that there is a path between two vertices if they are connected to one
another by a set of edges. This can describe how to get from some place to another using
a simple map: if the vertices are the set of intersections, and the edges are the streets, you
can get from one intersection to another by going through a street to get to some other

intersection and so forth.

Definition 14. A path between a and b is a non-empty graph P = <VP, EP> such that:
1. VP ={vo,v1,. .., v} such that Vi # j € {1..k} v; # v; A (v = a) A (vg = b)
2. EY = {vovy,v1v9, ..., vp_ 10k}

If we care only for whether there is a path from one vertex to another, we can use a
recursive notation, which I find more intuitive:

There is a path between vertex v and vertex u if and only if they share an edge, or there
is some vertex w such that there is a path between v and w, and there is a path between

w and u.

Directed Paths are used in directed graphs, where between two vertices v and u there
may be and edge from v to u, but not the other way around. The obvious example is the

one used above, except you use a car, and some streets are one-way.

Definition 15. A directed path between a and b is a non-empty directed graph
P = <VP,EP> such that:

1. VP ={vg,v1,... v} such that Vi # j € {1..k} .v; # vj A (vg = a) A (v = b)
2. EP:{<’U0,’U]_>,<U1,’U2>,...,<’U}€_1,’U}C>}
3. We will use the notion a ~> b to say ‘there is a path from a to b.

Here too, it is simpler to define a directed path if we care only for whether there is a
directed path from one vertex to another. The recursive definition would be very similar:
There is a directed path from vertex v to vertex w if and only if there is edge from v to u,
or there is some vertex w such that there is a path from v to w, and there is a path from

w to u.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 21

Cycles are path that start and end at the same vertex.

Definition 16. A cycle is a non-empty graph C' = <VC, EC>
such that:

1. V€ = {vo,v1,...,vp_1} such that Vi # j € {1...k — 1} .v; # v;

2. EC = {1)0’1)1, V102, .. ., kal'UO}

Rooted Trees are what we have been trying to get to all along: these are directed
graphs that have a root: some vertex from which there is a path to every other vertex,
and contain no undirected cycles: in trees the path from the root to every vertex is
unique. Rooted trees can be used to describe the trees we are familiar with from syntax:
the vertices are the heads, intermediate and maximal projections, and the set of edges

would be the ‘immediately dominates’ relation.
Definition 17. A rooted tree is a directed graph T = <VT, ET> such that:

1. There is a directed path from some vertex in VI to every other vertex in V' :

Jug € VIivoeVvT \ {Uo} 0 MU

2. There are no cycles in indirect (T').

While graph theory could be sufficient to describe linguistic structures, I find it easier
to deal with them in some other form. I define tree structures as relations: dominance
relations, which are maintained in structures that represent the assertion sets defined in
Barton and Berwick (1985) (see . I will start by defining the most basic elements,
dominance orders and the assertion sets that can contain them, and then prove that
dominance orders can represent trees. I will use this machinery both to describe my own
parser, but also to formalize some of the previous work, especially that of D-Theoretic

attempts.

e Elements: I use the term ‘elements’ to be theory neutral, as what the basic ele-
ments actually are differs between theories. In generative syntax, the basic elements
would include heads, intermediate and maximal projections. In my theory the basic
elements would be either morphological particles, words or even complete phonolog-
ical phrases. The difference lies in choosing what is allowed to dominate what: in

generative syntax heads are not allowed to dominate other heads, and so there is a

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 22

need for basic elements which are not strictly part of the input. In my theory I do
not assume projections of any kind and so the basic elements are usually chunks of

input: the size of the chunk may differ between implementations and languages.

Definition 18. M is a non empty finite set: the set of all elements or constituents.

e Dominance Orders:

— As I will prove below, dominance orders can be used to substitute the graph
theoretic notion of trees. I find them easier to manipulate and maintain. We
should think of dominance orders as the dominance relation in syntactic or
semantic trees. Here too, the dominance relations differ between theories. In
generative syntax an element would be dominated by another element if and
only if it is the daughter of that element, or one of its daughters, recursively.
In my theory, I only use semantic structure, and an element is dominated by
another element if and only if it modifies it, or modifies one of its modifiers,

recursively.

Definition 19. A dominance order D over a set M is a relation D C M x M

such that:

x D is a partial order (reflexive, antisymmetric and transitive)
* D is non branching to the past:

Vi, p2, 3 € C. [(p1Dps A poDps) — (u1Dpg) V poDpiy)]
* D has a minimal element: there is a pg € T such that:

Vi € C. [po Dyl

— While the general structures I use are dominance orders, immediate dominance
can be defined as the intransitive counterpart of dominance orders: all we have
to do is drop the recursive part of the definitions offered above. An element is
immediately dominated by another element in generative syntax if and only if
it is its daughter. Likewise, an element is immediately dominated by another

element in my theory if it modifies it.

Definition 20. For every dominance order D, IP is its immediate equivalent,

an immediate dominance order such that:

1P = {1, pa) € M? : (1 Dpg) A= (peDpa) A =3 € M. [y DpDpig]

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 23

— From these definitions we can demonstrate the relation between dominance

orders and the rooted trees we are already familiar with.

Claim 21. The pair <M, ID>, where M is a set of elements and D is a domi-

nance relation, is a rooted tree.

This follows from the definition of D: the root is the minimal element, and

since D is non-branching to the past, I” cannot have cycles in it.
e Assertion Sets:

— fR is the set of possible relations based on M, a union of all n place relations
based on M. This definition is general enough to include more than 2-place

relations. In practice, we can regard R as Pow(M x M)

Definition 22. R is the set of all relations based on M :
R=AR.IneN.RC M"

— A proposition is a property of relations: a set of relations. Using this terminol-

ogy, being transitive is a proposition: the set of transitive relations.

Definition 23. A proposition p is a subset of R

— An assertion set is a mapping between labels and propositions. This would allow
us to trace changes to multiple relations: applying the assertion set function to
some label that represents the relation will provide us with the set of all the

relations that relation can still be, based on the information we currently hold.

Definition 24. An assertion set AS is a function from labels to propositions.

— Refinements represent the way our knowledge grows: if one assertion set is
a refinement of another assertion set, it means that we know more about all
the relations contained in that assertion set: the set of possible relations (the

proposition) related to every label has either narrowed or remained the same.

Definition 25. An assertion set AS’ is a refinement of an assertion set AS if
and only if:
Vi e LABELS.[AS' (1) C AS (1)]

This machinery can be used to demonstrate how information gained during a parsing

process is narrowed down from a set of possible trees to the set of legitimate trees, and

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 24

if the sentence is unambiguous - hopefully just a single tree. The assertion sets discussed
above can describe the information growth of any relations, not just dominance orders.
We can therefore begin not with an empty assertion set, but rather one which already
presupposes that some label is associated with a dominance order. This is the situation
described below at the first stage of example . As we move from one stage to another
information is added, the assertion set is refined, and the set of possible dominance orders

is narrowed down until (in this case) we have a single possible dominance order.

(26) If T has three elements: a,b and ¢, and we begin knowing that there is some
relation D that is the ‘correct’ dominance order of T', our assumption set would

start off as something like this:

transitive N reflexive N antisymmetric N NBttP N ME when | = D

AS (1) =
R otherwise
where:
transitive = AR.Vzx,y,z € T.[(zRy AN yRz) — (zRz)]
reflexive = AR.Vt € T.[tRt]
antisymmetric = AR.Nz,y € T.[(xRy A yRz) — (x = y)]

NBttP
ARNz,y,z € T.

(non-branching =
[(xRy N zRy) — (xRz V zRzx)]

to the past)

ME (minimal element) = AR.3tginT.Vz € T.[uoT'z]
At this stage, D can be any one of the possible dominance orders on three

elements. If we now learn that aDb, D would be limited to the set of dominance

orders in which aRb, and our assumption set would be refined to the following;:
AS1 (D) N (AR.aRb) whenl=D

ASsy(l) =
AST(I)NAR otherwise
Which means that:
{(a,a),{a,b),(b,b),(c,c),(c,a),(c,b)},
485,(D) — {(a,a),{a,b), a,c), (b,b),(b,c),(c,c)},
{(a,a),(a,b),{a,c), (b,b),({c,c),(c,b)},
{(a,a),{a,b),(a,c),(b,b),(c,c)})

And D would be either of the following:

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 25

Q)
7\
O O

If further information reveals that =bDc (which rules out [2)) and =¢Db (which rules

out both (1| and . Our assumption set is therefore refined to the following:
ASs (D) N (AR.—bRc) N (AR.—~cRb) when | = D

ASy (1) NR otherwise
Note that now there is only one possible relation D, as AS3(D) contains only one

Q!
N,
O

ASs(1) =

element:

AS3(D) = {{(a,a),(a,b),{a,c), (b,b),(c,c)}}

b
O

2.2.2 Parsers

In this paragraph I will lay the basic machinery to describe all parsers I have mentioned
so far, the ones I will describe in and my parser. Since my parser is not strictly a parser
as briefly mentioned in the framework will allow me discuss ‘less than parsers’ as well
as parsers using the same terms. The basic layout is that of not necessarily monotonous

information growth, which builds relations representing the composition of the sentence.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 26

Parse States are the basic building block of parsers: they represent a stage in the
parse process of sentences. Different parsers will be formalized by the manner they move
from one parse state to another. The definition of parse states consists of some subset
of elements the parse state claims something about, an assertion set that represents the
information the parser holds in the state, and a labeling partial function that I use to set
apart actual input elements (to which the labeling function assigns a value) from non-input

elements (which have no such value).
Definition 27. A Parse State s is a triplet (M*, AS® %) such that:

o M5, the set of elements about which something is asserted is a subset of M (the set

of all nodes).

e AS® is a an assertion set such that: there is some « in the set of labels such that

AS (a) is a set of dominance orders.

e [° is a partial function from M the set of element to LEX the set of lexical items
such that Vu € M\ M5.1° (u) =L
We will also define Lg, the set of elements to which I° assigns a value and the value

it assigns, such that:

Ls={(p,a) : () €) N #L)}
We will use the symbol S for the set of all parse states.

The parse state s; of a parser that has just read the input elements ‘John’ and ‘ate’ might

be:

M®' = {a,b,IP,NP,VP,V}

John p=a
o [1(u) =< ate pu=0b
1 otherwise

L* = {(John, a) , (ate, b) }

If D is the dominance order we build then:

AS*1 (D) = AR.{(IP,NP) (IP,VP) (VP,V),(NP,a),(NP,b)} C R

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 27

Parse Processes represent the possible ways for a parser to move from one parse state
to another. In order to do that, I define parse processes as growth from some null parse
state in which no input elements have been read (that is, the L® of the initial state is
empty) to some set of result states. The growth is represented by a strict partial order
relation, so it would be possible to represent parsers in which different alternatives can be
entertained. The set of parse states ordered by that relation is finite, as the input is finite

and parsers are expected to stop at one stage or another.
Definition 28. A parse process P is a triplet (Sp,so, <p) such that:

e Sp C S is a finite set of parse states
e sy is a special parse state such that sp € S and Ls, = 0
e <p is a strict partial order over S such that

— Vs ESP\{SQ}.(SO <p S)

- Vsi,sj € Sp. (Si <p Sj) — (st - sz)

i =

Parsers are therefore simply set of parse processes. The only requirement is that for
these different parse processes the parse states they contain will be consistent with regard

to the label to which the final dominance order corresponds.

Definition 29. A parser P is a set of parse processes such that there is some label af such
that in every parse state s in every parse process P in P, AS® (aP) s a set of dominance

orders.

On-line Parsers can now be formalize. I use the fuzzy term ‘on-line parser’ to formulate
parsers that cannot maintain multiple information states at once: when information is
encountered it is incorporated in some unspecified way. This rules out parallel parsers,

but not parsers with unrestricted backtracking.

Definition 30. An on-line parser is a parser P where in every state s of every parse

process P, <p is a (strict) linear order.

Strictly On-line Parsers are a closer swing at what is defined as ‘on-line’ in several
theories (usually theories with backtracking, but excluding parsers with look-ahead). 1T
define strictly on-line parsers as parsers that do not allow more than one possible tree at

any given parse state.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 28

Definition 31. A strictly on-line parser is an on-line parser P such that the set of domi-
nance orders over M?®, AS® (ozP) N Pow (M?® x M?®) contains a single relation

or : VP € PVs € ST |AS® (oF) N Pow (M*® x M*®)| =1

Deterministic Parsers are parsers in which the information about the target state
grows from one parse state to another. The definition is therefore rather simple (and

follows Barton and Berwick| (1985))):

Definition 32. A deterministic parser is a an on-line parser P such that: If s; <p s;
then AS%i is a refinement of AS®i.
or: VP € P.Vs;, s € ST [(si <p s5) — (VY. [AS% (o) C AS%i ()])]

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 29

3 Previous Work

3.1 Limited Backtracking Parsers
3.1.1 Pritchett 1992

Pritchett[s (1992)) work is one of the most celebrated works in syntax-driven expla-
nations to garden path phenomena. While these are not the mainstream approaches to
handling garden path, they are grounded in theoretical work, unlike the main alternatives

which focus on psycholinguistic reality. Pritchett’s parser follows the following guidelines:
e The parser tries to build a syntactic treeﬂ

e The parser does not start building structure until the first predicate specifying a

theta grid (a verb) is encountered.

e Once a predicate is encountered, every new element is attached into the syntactic
tree, assuming a maximal theta grid, and trying to satisfy every theta role. From this
requirement it follows that if a verb is ambiguous between transitive and intransitive

forms, the transitive form will be assumed.

e The tree need not grow in a monotonic way: reanalysis is possible. However, a
reanalysis process can be costly or not. A costly reanalysis gives rise to garden
path, while normal reanalysis is not noticed. Pritchett considers re-analysis to be a
movement of constituents: if an NP was first attached as the object of some verb, and
ended up as the subject of the following sentence, the tree position it first occupied
is considered the source position, and the tree position it ended up attached to is
considered the target position. We can now define a costly reanalysis in Pritchett:

a reanalysis is costly if it violates the OLLC condition (mentioned in §2.1.4):

“The target position (if any) assumed by a constituent must be governed
or dominated by its source position (if any), otherwise attachment is im-

possible for the automatic Human Sentence Processor”
I will translate these terms to less theory specific terms:

The source position must dominate the target position, or be an argument

of the first maximal projection (xP) dominating the target.

8Most parser try to build a syntactic tree. I note that because mine doesn’t.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 30

If we try to formalize Pritchett’s theory, using the framework laid in we can see
that Pritchett’s parser Pp,iichets 1S not a strictly on-line parser, as it waits for the first
predicate before starting to build structure, but it can be assumed to be strictly on-line
after the first predicate is encountered. In addition, we can assume there is some further

restriction of parse processes that requires them not to violate the OLLC.

Pritchett uses these principles to explain a few kinds of garden path sentences (summed

up in (Mulders, 2002)):
1. Main Clause - Relative NP Ambiguity

(33) (a) The boat floated down the river.

(b) {The boat floated down the river sank.

This is the ambiguity that gives rise to the most famous garden path sentences. We
can see how his principles make b) a garden path sentence: when ‘floated’ is
encountered, one of the two interpretations has to be taken, namely the one where
it is the verb of the matrix clause, analyzing ‘boat’ as a part of the NP subject
of ‘floated’. When the second verb is reached, reanalysis places the target position
more than two maximal projections below the source position. In (33la), no second
verb is reached, so reanalysis is not required, correctly predicting the sentence not

to be a garden path sentence.
2. Complement Clause - Relative Clause Ambiguity

(34) (a) The tourist persuaded the guide that they were having problems with

their feet.

(b) ¢The doctor told the patient that he was having trouble with to leave.

In b)7 when we get to ‘that” we have a local ambiguity between a complement
clause and a relative clause. Since we try to maximize theta attachment, we choose
the complement clause option over the relative clause interpretation. When we
reach ‘to leave’ we are forced to reanalyzed the sentence, pushing the sentential
complement back to the second argument of the verb, a position separated by two
maximal projections from the source position, making the reanalysis expensive, and
hence causing a garden path. In a) the assumption made in the complement

clause / relative clause ambiguity is correct: this is indeed a complement clause, and

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 31

so no reanalysis is required, and the sentence is not a garden path.

v
T

A\ NP CP
| /_ PN
told Det N SOURCE
‘ _/\
the N CP
N
N TARGET
|
patient

3. Object-Subject Ambiguity

(35) (a) John believed the ugly little man hated him.

(b) (After Susan drank the water evaporated.

In b), ‘the water’ is first attached to ‘drank’ as the parser assumes a maximal
theta grid. When ‘evaporated’ appears, ‘the water’ is reanalyzed as the subject of
the matrix clause, and separated by a few maximal projections (PP, IP, VP) from
its source position. In a), a re-interpretation does occur: we first interpret ‘the
ugly little man’ as the object of the verb, but a re-analysis is not costly, as it does

not violate the OLLC.
4. Double Object Ambiguity

(36) (a) Rex gave her presents to Ron.

(b) (Todd gave the boy the dog bit a bandage.

In b) ‘the dog’ is pushed down from being the theme of ‘gave’ to the subject of a
CP modifying the dative, separating the target position by more than two maximal

projections (NP, CP, IP) from the source position

If we try to expand Pritchett’s theory to other processing related phenomena, we see

that it falls short of explaining them.

e Right Association: Pritchett’s parser should not fail in analyzing sentences in
which no reanalysis is required. Since processing difficulties in sentence such as ,
repeated here as are not the result of such a process, Pritchett’s explanation

cannot deal with them.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 32

(37) John will tell the kids he has already bought them a dog tomorrow.

e Modularity: Pritchett’s parser contains no mechanisms that would allow it to
provide more than one analysis for a given sentence, even if such different parse
trees exist. Trying to check how the theory deals with , repeated here as ,
shows that Pritchett predicts an analysis in which ‘from Italy’ is attached as an
argument of the verb rather than as a modifier of the noun, as the first option better
satisfies the theta criterion. However, if the ‘real’ source role is revealed at the end
later, as in , which is not (at least in Hebrew) difficult to process, Pritchett’s
theory is revealed to be too strong: ‘from Italy’ is ‘pushed’ under an intervening NP

maximal projection and the reanalysis is wrongly predicted to yield a garden path.

(38) (a) John has brought shoes from Italy

(b) John has brought shoes from Italy from work.

7
— T
A% NP PP
| | PN
brought SOURCE

e Complexity: Pritchett’s parser cannot parse in linear time , not only because he
does not want to mess with these notions, but because maximizing theta attachment
requires the parser to check, for every new phrase, all the predicates to which a new
argument can still be attached; since there can be O(n) of these elements, and this
procedure is carried out for every new element, and there are O(n) such elements, the
algorithm cannot drop below O(n?). It is also unclear how it can manage to evaluate
what error led to the wrong structure, and how a new structure is to be built. An
exhaustive search of wrong decisions can require undoing every decision and trying
again until proved wrong. If every structure building takes O(n?), and a reanalysis
of m elements takes O(m?), we may reach a worst case time complexity of O(n?).
Even though on average the parser will probably not exceed O(n?), one may wonder
whether assuming the parser to be able to evaluate such complex restructuring, does

not assign it more power than is plausible.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 33

e Monotonic Growth: Pritchett’s parser allows reanalysis and therefore does not

grown in a monotonic way.

3.1.2 Schneider 1999

Schneider| (1999) uses underspecification to allow his parser more flexibility, but allows
it to backtrack in certain cases. His basic framework is very similar to that of generative
syntax, but extended with the possibility of not fully specifying features. Like Pritchett,
he distinguishes between “cheap” and “costly” structure modifications. “costly” modifi-
cations result in a garden path, while “cheap” ones do not. Unlike Pritchett and following

Frazier and Fodor| (1978)), he does not consider ‘cheap’ reanalysis to be free.

Schneider’s (1999) parser is designed as a bottom-up parser. This means that the parser
does not assert, for instance, that a sentence is being built, and therefore some VP node
should be created, but rather builds the VP, as the evidence that calls for it (i.e. the verb)
is encountered. Functional categories are created as a manifestation of a feature: a noun
carrying dative case ‘expects’ a verb to assign it, a noun carrying nominative case needs
an IP that would assign it. By disassembling linguistic properties into features, the parser
is allowed to predict heads in head-final languages without being forced to change them
later: dative case may be assigned by a post-position as well as a verb, so the parser would
only predict a head that assigns the dative case, without actually specifying whether this
head is a verb of a post-position. Thus, the parser manages to be a strictly online parser:

every bit of information is integrated into the tree as soon as it is encountered.

The parser has the following preferences, modeling psycholinguistic data:

1. Attach as complement along the right edge of the tree (prefer recent attachments

sites).

2. Attach as an adjunct along the right edge of the tree (prefer recent attachments

sites).
3. Predict the head that would integrate the new element to the tree.

4. If these options fail, choose the first attachment site that can attach the new element
(and / or its predicted head), detach its current attachment, incorporate it into the

exiting material, and attach the combined element.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 34

5. Fail the process (resort to other cognitive mechanism).

The first three preferences are kept in Pritchett’s model as well, but the fourth one is
designed to explain a phenomenon I do not explain in my parser (though it is not impossible
to do so): [Frazier and Fodorfs (1978) RALR: reanalysis as a last resort. This means that
in sentences where reanalysis is required in the local scope (this is also not quite a theory
neutral term), and a solution exists in the global scope (for instance, via attachment to a
higher verb), there would be a preference to resolve the problem in the global scope rather

than perform a reanalysis.

From the first four attachment principles follows the fifth: garden paths occur if no
attachment site can be found, not even by employing a ‘legitimate’ reanalysis. This means
that the backtracking capabilities of the parser are limited to re-attaching elements which
are at the right edge of the tree. Reanalyzing a sentence as a reduced relative for instance,
would be an operation that does not involve the right edge only. Schneider’s parser would
be able to reanalyze , as re-attaching a PP to an NP which is on the right edge,

once the PP is removed from its original attachment site, is possible.

If we review the other requirements we made for parser, we can see that Schneider’s

parser does not meet most of our desiderata:

e Right Association: Schneider’s explanation for right association lies in the com-
patibility with psycho-linguistic findings. The parser scans for attachment sites
bottom-up, and if it would give up on an attachment site, another might not present
itself later. This, combined with a modular view of language, would allow the parser
to attach an element to an improper attachment site, even if this means giving up
the option to find the best attachment site: complements would always be attached
to the last verb if possible, even if this leaves another verb missing an obligatory
complement. The same goes for adverbials, which may be attached to semantically

improper verbs.

e Modularity: As mentioned above, dealing with ambiguity would require the parser
to preserve more than one ‘state’, as it builds a fully specified syntactic tree. The
modular view that saves Schneider’s parser from managing to interpret right associ-

ation sentences properly, does not allow it to build more than one interpretation at

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 35

a time: only one structure is maintained, and underspecification is not used to hold

ambiguities.

e Complexity: The parser reviews the entire tree depth for every operation that
requires building a new head. Since there are O(n) such operations when process-
ing a sentence, the cumulative complexity is O(n?), provided that no reanalysis is
performed. To keep the compatibility with psycho-linguistic evidence, which do not
support non linear growth of processing time, Schneider would have to assume a
parallel computational model; the model is apparently compatible with such en-

hancements.

e Monotonic Growth: Not kept. Reanalysis is possible.

3.1.3 Lewis 1998

Lewis’ (1998) work tries to describe the human parser in terms of a computational
framework: NL-Soar. This framework does not allow more than one computational state
to be ‘saved’, and as such does not allow ‘real’ backtracking nor parallel processing, and
actually requires the parser to be a strictly on-line parser. To solve erroneous decisions
made, due to local ambiguities, Lewis introduces a structure destroying operation that he
labels SNIP, and uses it, together with his structure building operation LINK, to describe

how structure is built, and when it should be destroyed.

Lewis is not unaware of the appeals of deterministic growth of underspecified structure,
but claims that such a procedure cannot be claimed to be more plausible than building
and correcting a structure, since the actual structure implied by underspecification is a
syntactic structure which has to be computed by the semantic module - which he finds
odd’ - and the immediate dominance relation grows in a non monotonic way['} This also
means that the model he proposed cannot maintain ambiguities, as they would require a

multiple final tree representations to be contained in the structure he builds.

Since structure rebuilding takes time, Lewis limits the kinds of structure SNIP can
destroy to that of the maximal projection containing the inconsistency. This means that

his SNIP operation should be able to correct structures which turn out to be garden paths,

9This is only odd if you assume the parser builds a syntactic representation.
107 show this is not alway true in

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 36

such as ([34p) repeated here as , since the inconsistency is contained within the VP to

which the relative clause was attached as an argument to the verb.

(39) (The doctor told the patient that he was having trouble with to leave.

Lewis’ model allows the structure that is built to be contained in the memory of the
parseﬂ and does not limit the possible applications of his LINK operations, thus allowing
every attachment to take place, if there is a predicate that can take an element as its
argument. This means that deciding which operation should take place takes well more
than O(n); however, as he is also aware that the entire parse process should take a finite
number of steps, he only counts the actual number of applications of operations, i.e. how
many times LINK and SNIP are used. While this is less efficient than what I desire to
achieve, in other computational models (our mind may offer one) this may mean that
O(1) can still be achieved. Note that any model that manages to drop the O(n) space
requirement for an O(1) storage requirement, such as the model I propose in will

be more efficient in any computational model.

Lewis’ parser can be summarized as having the following features:

e Right Association: In Lewis’ model, processing problems of the ‘right association’
type can only happen if LINK is constrained. Since Lewis’ deals more with the
constraints of SNIP, this is not achieved. However, we can come up with a Lewis-
like parser which would limit both SNIP and LINK, possibly creating some basis for
dealing with such sentences. Such an attempt would be rather ad-hoc, since Lewis
does not propose that LINK operations grow more complex with more input, even

though they hold more storage and more decisions can be made.

e Modularity: As mentioned above, dealing with ambiguity would require the parser
to preserve more than one ‘state’, as it builds a fully specified syntactic tree. Lewis
opposes that possibility for other reasons, which mean that the parser follows just
one path. It is of course possible to stipulate that, given a choice of LINK decisions,
semantics can play a role in deciding which one to choose; however, since those very
LINK decisions can be undone by future SNIP operations, it is rather unclear when

the semantic intervention should take place. A possible alternative to that may

1This makes his claim that this is derived by memory constraints somewhat implausible.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 37

be found in |[Weinberg/s (1999) parser, in which the parser only commits itself to
some piece of structure when a merge operation fails: semantics may be allowed to

re-interpret uncommitted structure only.

e Complexity: The complexity depends on the reader’s view of Lewis’ analysis. The
parser operates in linear time, but apparently not by using the RAM computational
model. Lewis views his LINK operations as something which can be carried out in
a fixed time frame, but does not go into detail for how should the alternatives of

LINK be considered.

e Monotonic Growth: Lewis claims this is unnecessary.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 38

3.2 Deterministic Parsers
3.2.1 Marcus 1978

Marcus (1978) is not concerned with providing explanations for garden path related
phenomena, but rather with providing a more efficient approach to parsing. Marcus
compares his work to that of backtracking and parallel parsers, and demonstrates how
well a rather simple machine working in O(n) can parse (though he does not say that he
aims to reach linear complexity). As I have mentioned above in my critique of Pritchett’s
work in a backtracking parser might be very inefficient. Parallel parsers - another
alternative prominent at the time of Marcus’ work - is just as complex and memory
consuming. This may have changed with time, but even Tomitas (1987) parallel parser
is a great deal more complex that any linear parser such as Marcus’. Instead, Marcus
suggests a parser which immediately incorporates data it encounters into the tree, and
does not make any mistakes (and therefore requires no backtracking). Marcus is quite
aware of the limitations imposed by what I have labeled in above ‘modularity’: he
does not expect his parser to decide in such cases, but rather to know how to interface with
a semantic module to get this information. To avoid making mistakes, Marcus’ parser has
a three phrase buffer: other than the ‘main’ tree, the parser can keep up to three phrases
(in a phrase only the top node is visible). These three phrases are supposed to give

the parser all the information it needs to avoid wrong attachments in non problematic

sentences such as (B|[b]), repeated here as (40)):
(40) John saw Mary dance.
Marcus’ parser works very much like a stack automaton. It contains three basic struc-

tures:

e A stack of incomplete nodes, that is nodes to which complete phrases can still be

attached.

e An O(1) buffer of complete phrases: this is how the parser implements its look-
ahead. The size of this O(1) buffer should be small, to reflect data constraints, and

is set by Marcus to three phrases.

e A set of condition-sets. These reflect the state the parser is in, and the operations

that are derived from its condition and the data.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 39

The instructions in the condition set can test conditions that have to do with the O(1)
buffer storage, with the top two elements of the incomplete node stack (to deal with PP
ambiguity: for cases in which we know that both the verb and the object can both attach
a PP, and we have to choose what would have precedence). This means that the number
of possible conditions is limited to the properties is O(1) storage, and therefore evaluating
a condition takes O(1). Since the condition sets are part of the parser, and cannot be
modified during the parser’s execution, the number of possible conditions checked and
executed cannot exceed O(1), making the number of operations between each attachment
or push into the incomplete node stack of O(1) complexity. Over n elements, the total
parsing time complexity is therefore O(n), and the total space complexity, as mentioned
briefly above in §2.1.4) of O(n), as potentially every node can end up in the incomplete

open node stack.

Marcus’s framework deals nicely with the sort of sentences it was set to parse, parsing
them a great deal more efficiently than parallel or backtracking parsers. However, when
we choose constants for an O(1) storage, we should be careful not to oversize them. Since
Marcus’ parser should choose correctly every single time, he has to allow it to hold three
phrases at once before making a decision. While this does not mean that the parser is
not an online parser, the constraint is not tight enough to fit the behaviour of the human
parser. There are garden path sentences that have less than three phrases, and should

therefore be analyzed correctly in Marcus’ parser, but do cause a garden path condition.

(41) (a) ;Without her contributions ceased.

(b) zulca metayelet bavadi
shirt/evacuated(PASSIVE) hikes/hiker in the creek

A hiking shirt in the creek (an improbable noun phrase, not a sentence).
. A hiker was evacuated from the creek.

In , attaching ‘her’ to ‘without’ is not the attachment that causes the garden path.
This means that Marcus’ parser can perform this attachment and hold ‘contributions’ and
‘ceased’ in its buffer. In this case, the parser should have all the evidence it needs not to
attach ‘contributions’ to the PP, but the sentence does cause a garden path. This might
mean that ‘contributions’ is attached to ‘her’ before ‘ceased’ is encountered. The Hebrew
example in , in which the garden path is caused by two lexical ambiguities, is even

worse: the entire sentence is in the buffer when the wrong decisions are made. This shows

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 40

that even though the mechanisms are rather simple in terms of complexity, the parser’s

‘per-operation’ constant is not small enough.

To sum up, Marcus’ [1978| parser has the following properties:

e Right Association: Since Marcus’s parser makes his choice using a finite number of
storage elements, it is likely to make attachment errors even though the information
needed to avoid them is still available. This makes it (at least in principle) susceptible

to right association type errors.

e Modularity: Modularity is not implemented in the parser, it is one of the things
the parser calls for: Marcus is quite aware he cannot decide between some competing

options, and calls for intervention.
e Complexity: The parser uses linear time and storage to parse a sentence.

e Monotonic Growth: No assertion made by the parser can be retracted, and the

assertion set does indeed grown deterministically.

3.2.2 Weinberg 1993

Weinberg's (1993) work is one of the prominent and complete attempts to use D-
Theory in order to explain garden paths, using a deterministic parser that adds dominance
statements rather than immediate dominance statements to its assertion set. The parser
therefore can only ‘correct’ itself by pushing down an element by using intervening nodes,
and cannot stipulate syntactic material without direct evidence for its existence, since it

cannot retract what it has already stipulated. The parser employs the following principles:

Basic Parsing Algorithm:

(a) The parser uses an underspecified representation, written in terms of dom-
inance and precedence predicates, to construct a local representation that
is maximally licensed according to the submodules of the grammar. This

creates an assertion set of dominance relations.

(b) The parser uses no lookahead. It scans tokens one word at a time and tries
to shift a token onto the current phrase that it is building. If attachment

to the current token is unlicensed, then the phrase currently being built

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 41

is reduced and the parser tries to shift the token onto a previously built

phrase.

(c) The parser may add to its assertion set after seeing disambiguating ma-
terial, either by adding a statement to the set or adding features to in-
completely specified phrases using categorial notation as defined by the
X-bar system. The parser may also establish and add to linear precedence

relations.

Following the terms we have used in our objectives, the parser has the following prop-

erties:

e Right Association: Weinberg’s parser may be able to handle some right association
problems, as it tries to first allocate a token in the current phrase, and only then
looks for attachment site further up the tree. If we strengthen this assumption to
include some sort of modularity (for instance, if the parser is not even aware of higher

nodes when it tries to perform the attachment) then we get the desired behaviour.

e Modularity: The very behaviour which lets the parser misinterpret right associ-
ation sentences in the way the human parser does, is undesirable in attempting to
explain ambiguity. For instance, if a PP is encountered after a noun, attaching it to
the noun follows the parser’s attempt to attach every token to the current phrase;
this would mean that an D(N,PP) statement would be added to the assertion set,
and the PP attachment ambiguity would be lost. The ‘correct’ behaviour would be
to attach the PP to the verb, as this would leave the interpretation in which the
NP dominates the PP still possible. This, however, would result in an ambiguous

structure, and this is not what |Weinberg (1993) describes.

e Complexity: |Weinberg's (1993) parser does indeed have linear time O(n) com-
plexity if it follows the stated behaviour. However, allowing for the corrections that
follow from its inability to trace ambiguities may well make it more complex. The

space complexity of the parser is also linear.

e Monotonic Growth: Here we should note Lewis] (1998)) criticism of Weinberg’s
approach: [Weinberg| (1993)) tries to use the underspecified dominance statements as
immediate dominance statements when there is a lack of counter evidence: The set

of dominance relation assertions:

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 42

{D(V,NP),D(V, PP)}
is ambiguous between the two possibilities:

{IP(V,NP),IP(V,PP)} and {IP(V,NP),I”(NP,PP)},

but only the first option will be taken as true. This means that, indeed, the I”
relation does not grow in a monotonic way. This means that unless we maintain
immediate dominance relations outside the assertion set, only the dominance relation

would grow in a monotonic way.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 43

4 My Parser

4.1 Implications on Implementation
4.1.1 Implementing Complexity

In §2.1.4]T have set the parser’s complexity to be O(n). For that to be achievable, the
number of operations allowed for each element (word, syllable, phonological phrase etc.)
has to be of O(1): the number of operations has to be finite and independent of input

length. This has some implications:

1. No large scale reanalysis is possible: the number of times an element can be ‘repro-
cessed’ should be independent of the size of the input. In other words, the algorithm
may require one, two, or any number of elements to be reprocessed, as long as this is
not an iterative process. Choosing too many elements here has other consequences
which are independent of complexity issues. Example , repeated here as
demonstrated that for word elements in English, we cannot allow more than one word
to be reprocessed: this is a garden path sentence, and it only requires the reanalysis
of the last two words. If we could reprocess both ‘ceased’ and ‘contributions’; this

sentence would not have been a garden path, but it is.
(42) ;Without her contributions ceased.

This yields a deterministic (or monotonic) parser, as defined in Barton and Berwick
(1985): every decision that is beyond the scope of legitimate (language dependent)
reanalysis can be considered to be in the algorithm’s assertion set. When reanalysis

is not bound, no decision fulfills this requirement.

2. The number of elements involved in any decision making has to be finite and inde-
pendent of the size of the input. The description of the algorithm should therefore
have no more than a finite number of storage elements (or registers) available for
any decision. For example, when we consider where to attach a PP, we may con-
sider the immediately preceding NP, or the NP and the VP above it, but not any
number of VPs above it. This automatically yields a ‘Right Association’ tendency
as in (Kimball, 1973): if the parser does not hold the top nodes of the tree in its
working storage, attaching to the lower nodes is the only available option. It should

be noted though, that changing the representation used by the parser, as suggested

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 44

in §2.1.5] and below, in might compromise that, and we would have to check
that it is still achieved.

3. Ambiguities can only be resolved within the storage limited number of elements. In
order to even know there are large scale ambiguities, the parser would have to ‘climb’
up the entire tree length for every element it encounters, so it may find alternative

attachment points.

What these limitations mean, is that within the limits of linear processing time, it would
be impossible to have a parser that can manage ambiguities, and would be severely limited
in solving rather local ones. Thus, only allowing for a parser that would not be able to
‘grasp’ the full interpretation of a sentence, but rather to get its information incrementally,
one bit of information at a time. This calls for a simpler and more limited representation

of the parse tree, which I will demonstrate in the following section.

4.1.2 Implementing Modularity

Modularity, as one can conclude from the limitations imposed by linear processing time,
is not only an aim to achieve, but a necessity: if ambiguity cannot be resolved by the
parser, than it has to provide a structure that is modular, that is: a structure in which

the ambiguities remain unresolved.

Our first shot at trying to achieve a modular structure would be using D-Theoretic
representation. In D-Theory, as in Weinberg (1993)), two orders are maintained: precedence
and dominance (rather than immediate dominance). Precedence is evident from the input
data and need not be maintained. Dominance, however, requires the parser to connect
pieces which might be very far apart from each other, at least when certain ambiguities

are resolved. Sentences such as , repeated here as (43)):
(43) Dan told Mary to ask Jane to invite John to the party, rather than do it himself

require the parser to check every verb for possible attachment. The parser would have to

check which of the following statements can be added to the assertion set:
1. AR. (invite, rather than do it himself) € R

2. AR. (ask,rather than do it himself) € R

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 45

3. AR. (told, rather than do it himself) € R

This would require the parser to keep all the verbs in accessible storage, which we have

already seen is impossible in linear complexity.

Parsers usually try to build syntactic structure. I find that in order to achieve the level
of modularity I require I will have to do without syntactic structure. In the classical PP
attachment ambiguity for instance, the differences between the two structures in syntactic
terms are significant, while in semantic terms they are not: it’s only a question of which
head the PP modifies. Giving up syntactic structure for semantic structure gives me
greater flexibility. I do not think this is too problematic, as the aim of a parser, after
all, is to transform the linear phonological data into semantic representation: so having
a semantic representation as the goal of the parser should be even more natural, in my
view, than trying to achieve a syntactic representation. Note that this does not mean that
there is no need for another syntactic phase or module: I do not try to claim that there is

no need for syntax.

The alternative I offer is maintaining a relation that is not a dominance order, but
rather determines a set of dominance orders: one or more of these dominance order should

be the correct parse of the tree. There are several implications of this choice:

1. The set of dominance orders may contain dominance orders which are not the correct
parse trees of the sentence. This can only be determined by subsequent modules,

which can incorporate more data into the decision.

2. An ambiguous sentence should have all its valid readings in the dominance orders
set: this predicts that, if for some reason, one of the expected readings is not in the
dominance orders set, this reading would not be available, at least not to someone

who hears or reads the sentence.

3. If the correct parse tree is not in the dominance orders set, the sentence would not
be understood, or, in terms we have already used, the sentence would be difficult to

process.

4. This should also go the other way around: if a sentence is difficult to process, we

expect the correct parse tree not to be found in the dominance orders set.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 46

The structure I provide is a linear order of input elements, which is unlike the original

linear order provided by phonology, and adheres to the following two conditions:

e If an element modifies another element, it follows it. By modifies I refer to a semantic

notion:

Definition 44. Element A modifies element B if and only if A is an argument of B
or otherwise restricts B, or (recursively) A modifies some element C' that modifies

B.

For example, in the sentence ‘John saw blue flowers’, ‘John’ is a modifier of ‘saw’
because it is its argument, and ‘blue’ modifies ‘saw’ because it restricts ‘flowers’,
which is a an argument of ‘saw’. Since in the semantic tree of a sentence an element
that modifies another element is dominated by the other element, I will often use
the term ‘dominates’ rather than ‘is modified by’, and ‘is dominated by’ rather than

‘modifies’.

e An element and all its modifiers are not intervened by another element. Combining
this with the previous condition means that if A is modified by B, then every element

between A and B modifies A as well.

This representation is very similar to a bracketed notation, in which the brackets are not
specified (not specifying the brackets yields the underspecification). ‘John saw flowers’

might have the following representation:
o saw < John < flowers
Which should be interpreted as:
o [saw < [John] j pn < [flowers]ﬂowers} .

While an ambiguous sentence ‘John bought her jewels’ might have the following represen-

tation:
e bought < John < jewels < her
This can be interpreted as either of the following, depending on context:

o [bought < [John] ;. < [jewels] < [her]her}

jewels bought

o [bought < [John]John < [jewels < [h‘er]her}jewels}

bought

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 47

The subsequent module’s main task would therefore be placing the correct ‘brackets’, and
processing difficulties can be represented as supplying the wrong linear order. Subsequent
modules would rely on the linear order, and if the correct interpretation is not the result

of placing the correct brackets, we would experience a processing difficulty.

In formal terms, this means that I have to define both a linear order for the parser
to build, and a dominance order, which will be what subsequent modules should reveal,

based on context and other data.

Definition 45. The structure built is defined as a pair: A = <MA, §> such that:
o M4 is a finite set of elements.
o < is a total linear order relation on M4

We already know, that, if we wish to keep linear complexity, it is impossible to handle
anything but a set number of ‘entrance’ points to add elements in. This would naturally
allow the parser to set an element before all the elements that are already set in the linear
order or after all these elements. It would be possible to set a fixed number of other such
elements: ‘just after the first element’, ‘just before the last element’, as long as the number
of these special cases is not only of O(1) space complexity, but also small. If this is kept,
the linear order can be accessed as O(1) storage, meeting the complexity requirements. A
linear order, however, is just a single dominance order, and the modular underspecified
structure requires for more than one such dominance order to be present. I therefore define

the C, a partial order, based on the guidelines I gave above.
Claim 46. In every non-empty A there is at least one partial order relation T such that:
e (B)C ()

e The pair <MA, E> 18 a semi-lattice.
That is, for every ui, p in M, the least upper bound or join of p1 and pg, p L g

is in MA.

o For every two elements 1, po, such that i C s, the pair:

{p:pr <p<ps},C) is a semi-lattice.

Samples of C may be:

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 48

1. C= {(,uo, 1) : po is the minimal element in M4 with regard to < and p € MA}

2. L=<
/"\/
GGG

The examples I gave above are dominance orders. Their immediate dominance order

equivalent, I= would be:

1. Ho
M1 H2 K3
2. o 251 25’ ©3

What is obviously needed here, is to prove that C is a dominance order. This is rather

easy to prove:

Claim 47. T is a dominance order.

Proof. This follows from the definition of dominance orders:
e [is a partial order by definition.

e [is non branching to the past. If there are two elements pq, puo such that pu; C s
and po C t3, then without loss of generality, p1 < po, which means us is in the semi-
lattice ({p: p1 < p < pus},C), and since for every p in that semi-lattice p1 C p as

CC<, it follows that gy T po

e [has a minimal element as it is a semi-lattice defined over a finite set.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 49

From this it should follow that what the next modules can come up with are trees, if we

can produce a tree from the C relation.

Claim 48. <IE,M> 1s a rooted tree. This follows directly from the claims in &
and [{7 above.

I will now re-define the two constraints I proposed above in a formal manner. This is
what the definition of C boils down to. I will use these constraints in the following section
to show how the requirements made by C are not met in sentences which are difficult to

process.

e Non-dominance: If uy and uo are in M, and p; < peo, then uo does not dominate

u1: pq does not modify to or any of its modifiers (recursively).
e Bracketing: An element (head) and all its arguments and modifiers are not inter-
vened by a element which is not dominated by the head.
Here are a few demonstrations of what the < and C relations can yield. In , the
verb has two arguments.

(49) John ate apples.

In order to provide the correct parse tree, the verb must precede its argument. Therefore,

the two valid possibilities for < are:

1.
T
ate John apples
2.
T TTT—

ate — apples — John
We can see straight away that if the parser yields the first option, C can be either of the
following two options, of which only the first is the correct parse tree. This is also true,

of course, if the parser provides the second option.

1. C= {(mo, i) : to is the minimal element in M4 with regard to < and p € MA}:

/\

ate — John apples

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 50

2. =<

S T
ate John apples

The way of building the correct assertion set under such conditions, requires us to put
the dependency between C and < into the assertion set before any other information
is provided, in much the same way as we have put the fact that the relation D is a
dominance order in example on page The initial assertion set should contain at
least the following statements (notice that since the information growth is deterministic,
every relation set has to be a subset of the relation set assigned for that label in the

previous assertion set):

ASo(l) = ALR
AS;_1 (1) Nlinear order I =<
ASi (1) = AS; 1 ()N AR.[(R,T)is a semi-lattice] N RL | =C
ASi—1 () otherwise
where:
35S € AS;(<).
RL = A\R.

(RCS)AVt1,tg € Tt Rta — ((R, {t : t15tSta}) is a semi-lattice)

We can now begin parsing an ambiguous sentence, and see how both meanings are kept.
I will use , repeated here (again) as , and treat ‘from Italy’ as a single element to

make the example short.
(50) t; = John,ty = brought, t3 = shoes, t4 = from Italy

The following does not necessarily match what the parser I suggest does, but it does adhere

to the definition of C used by my parser.

1. We decide that ‘John’ does not dominate ‘brought’, and we therefore put it after

‘brought’ in the linear order: to < t1:

AS;_1NARtRt; =<
ASs (1) =

AS;_4 otherwise
Notice that we still don’t know how many elements there are, but they do not affect

our interpretation. When we get to the end of the sentence we will only use the

subset of the relations that deals with the elements we have said something about.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 51

2. Now we decide that ‘shoes’ is also an argument of ‘brought’. Since we would like
not to keep the data about elements we have already used, we attach it to the end

of the chain already maintained: t; < t3.
AS;_1 N ARt Rty 1 =<

AS3(l) =
AS;_1 otherwise

3. At last we decide to concatenate ‘from Italy’ to the end of the chain: t3 < t4.

AS;_1 N ARt3Rty =<

ASy(l) =
AS;_4 otherwise

Notice now, that even though we have not modified C directly even once, it has changed,
since its definition was derived from AS; (<), which was modified. Now we can check

which are the valid IE relations, and there are four of them.

(51) (a) t2 tl t3 t4

ty
Of these, and are not valid parse trees of the sentence, but and
are the two available ambiguous parses. is the case where the PP is interpreted
as an adjunct, and is the case where the PP is interpreted as an argument to
the verb. Notice also, that any subsequent module is very unlikely to accept the first
two alternatives, as they require ‘shoes’ to modify ‘John’. This hints that the number

of interpretations does grow rapidly, but the task facing the subsequent module is not as

complicated as it first seems.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 52

4.2 Parser Overview
4.2.1 Data Structure

My analysis is built out of the following elements and operations:
e Units

— The basic input element u (word, syllable) is a unit.

— Every unit has two properties: its category set and its label. The category set
is the set of possible categories for the unit. To refer to an element’s category
we will use the notation cat(u). For simplicity, I will currently refer to the
category set as just a set. In practice it is much more likely that each category
is assigned some likelihood. The word ‘man’ for example, is more likely to be
a noun than a verb. I will use a unit’s category to store both its syntactic
category and its required argument structure. The label of the category is the
input it was based on: the word or the syllable. To refer to a unit’s label we
will use the notation label(u).

I use a rather loose notation for the category set of units, but the following

guidelines do apply:

x The first symbol is the unit’s own category: if the category set of some
unit is {V'}, its category is V. If some unit’s category set is {V, N} it is
ambiguous between categories V and N.

* In subscript I write the list of arguments the unit can take. If some unit’s
category set is {Vy}, its category is V, and it can take an N category as
an argument. If some unit’s category set is {Vy 1y}, its category is V', and
it can take two arguments: N and V. Notice that if the unit’s category set
is {Vn, Vi }, its category is V and it can take either N or V.

* In superscript I write the predicted role of the unit: if a unit’s category
set is {AN }, its category is A, and it predicts a category N (that is the
result of applying this unit to some future unit will result in an N). I
use superscript for another similar use, to mark the thematic role of an
argument: {N subj. N "bj'}: is the category set of a unit whose category is

N, but is ambiguous between predicting the role of subject and object.

* Superscript and subscript notations can be combined. Using both, we can

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 53

describe the category set of a V' that takes an N subject: {Vysub;. }.

— The concatenation of two units a and b, ab is a unit (recursively). The category
set of the new unit is that of the left unit, or in this example, cat(ab) :=
cat(a). The label of the new unit is the concatenation of the more basic labels:

label(ab) := label(a)label (b).

e Data Structures: there are three data structures for holding units. There are no

other means of holding or accessing units.

— The open unit stack is a stack (push down storage)E of units. The top n units
of the unit stack are visible to comply with the complexity requirements, and
n = 1 is the natural starting point (unless some language demonstrates that it
is not the case for that language). This means that usually only the last unit
to be inserted into the stack is visible. We will refer to the top unit in the stack

as open[1], the second visible element (if any) as open[2] and so forth.

— The closed unit stack is a stack of units of which the top n units are visible.
Here again, n = 1 or just the last unit to be inserted into the stack is the
natural starting point. We will refer to the top unit in the stack as closed][1],
the second visible element (if any) as closed[2] and so forth. Note that it would
be more efficient not to have a closed unit stack but rather an O(1) storage to

hold closed elements. This alternative is discussed in subsequent sections.

— The current unit(s) is an O(1) storage holding n: a finite and independent
number of units, from the input. In the case of English, where units are words,
n = 1, as n = 2 would have kept sentence , repeated here as , from

being a garden path.
(52) Without her contributions ceased

We will refer to the first current unit as current[l] and so forth. For conve-

nience, we use the term current as equivalent to current[1].

12° A stack is a data structure that can contain countably many elements, but allows access to only a
finite number of elements: usually just a single top element. Inserting a new element into a stack makes the
new element the new top element, and removing it restores the previous top element. Therefore, inserting
a new element into a stack is usually called push and removing the topmost element is usually called pop.

In terms of complexity, both the push and pop operations can be achieved in O(1) time.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 54

For example, when we process a sentence such as “John saw a man”, at the point
where we first encounter the word ‘man’, the data structures are likely to contain

the following data:

— Open unit stack:

* open[l] = (a,{D}) < Top of the stack

* open|2] = <saw, {VNsubj.+Nobj., VNsubj.+V}>
— Closed unit stack:

x closed[l] = <John, {NSUbj', N"bj'}> «— Top of the stack
— Current unit;:

* current[l] = <m(m, {Nsubj',NObj',V, .. }>

e Operations: the following operations are defined, each of which can be performed

O(1) times:

— u = NewUnit(label, category set): when a new unit is first encountered, it is

assigned a finite set of possible categories.

— SetCategory(u, category set): remove or reduce categories in the unit cate-
gory set. To reduce a category means to transform it to another category:
the chain of possible transformations is bound and predefined. To remove a
category means just that: remove it from the category set. Note that, since
the number of categories is finite to begin with, this operation will not be
repeated more than O(1) times. A possible category set for ‘man’ may be:
{ NV NSUB3- V. suns. }

- U= Attach(ul, uQ): concatenate a unit to another unit: u := pjus

— PushClosed(u): push a unit to the closed unit stack.

— PushOpen(u): push a unit to the open unit stack.

— u := PopClosed(): pop a unit from the closed unit stack.

— u := PopOpen(): pop a unit from the open unit stack.

— u := CreateUnit(category set): A unit may create a new functionaﬂ unit.

The category set of the new unit is usually a singleton, that is comprised of a

single element. Functional units can create new functional units themselves, as

3Functional means here not based on input

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 55

long as the number of successive functional units is independent of the input

size and finite (O(l))E

4.2.2 General Outline

The operation of the pre-parser is limited by the decisions it can make, due to the O(n)
complexity bound. Under these limits, the pre-parser should try to attach every new unit
to the units which can still be extended, and not rely on the possible existence of better
attachment sites which are not within view. The stored units are therefore split between
two data structures: one which contains units to which units can still be attached (the
open unit stack), and one which stores units to which other units cannot be attached, and
which could not be attached to another unit while they have been processed (the closed

unit stack).

The general pre-parser strategy in English should be something like this:

1. Check if the new unit (current[l]) can be attached to the unit at the top of the
open stack (open[l]), based on the category sets of both elements. Every unit can

be attached to the “top” of an empty open stack. If so, do the following:

(a) Modify the possible category set of the current unit to reflect what the previous
unit can have as its argument (a unit that can extend a verb that requires a
direct object should not have the option of being a verb itself: if the top of the
open stack contains ‘drink’” and the current unit is ‘water’, water will no longer
have a verbal category in its category set)

SetCategory(current[1],{...})

(b) Push the new unit to the top of the open stack
PushOpen(current[1])

(c) Read the next unit.
current[l] = NewUnit(...,{...})

For example, a parser in the following state, which complies with the condition for

this rule:

14 Creating functional units is not an essential part of the parser, but rather a trick, designed to store
the parser’s state in the data structures used to hold units, rather than in some other dedicated storage.
This operation can be dropped in future implementations. Functional units are ignored in the output of

the parser.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 56

current: water {NObj', NS“bj', Vinobj. o nsub. }

open stack closed stack

drank {VNobj,+Nsubj_} John {Nsubj.}

will change by the rule to the following state:

current: the next word

open stack closed stack
water {N"bj'} «— Top of the stack
drank {VNobj.+Nsubj. } John {NS“bj'}

2. If the new unit (current[l]) could not be attached, but the top of the open stack
(open[1]) can be an argument of the new unit by some functional category (such as

in the case of NV N sequence where N can be a genitive pronoun)

(a) Push the current top the open stack into the closed stack
PushClosed(PopOpen())

(b) Push an appropriate functional unit to the top of the open stack.
PushOpen(CreateUnit({...})

For example, a parser in the following state, which complies with the condition for

this rule:

current: coke {NObj-7 NSubj.}

open stack closed stack
his {NNObj'} «— Top of the stack
dT‘ank‘ {VNobj.+N5ubj. } JOhn {NSUb‘j}

will change by the rule to the following state, in which a functional unit is pushed
into the stack. Do notice that the functional unit (marked here by 0)) take no part
in the determination of < or C. In other words: functional elements are not really
units but rather ‘place holders’, and we ignore them for any other purpose. The
symbol I use to mark their category set, X}f , defines their proper use: their own
category is X, which is disregarded, as they project some Y category, which also
‘happens to be’ the category they take as an argument. This is really an explicit

way of telling the parser ‘attach an element of category Y here’.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 57

current: coke { Nobi-, Nsubj.}

open stack closed stack
0 {X]]\\,f::j} «— Top of the stack | his {NNObj'} — Top of the stack
drank {VNobj,+Nsub]; } John {Nsubj.}

In the next iteration rule || will apply again and coke will be pushed to the open

stack with only N in its category set.

current:
open stack closed stack
coke {N"bj'} «— Top of the stack
0 {X]J\\;::;} his {NNObj‘} « Top of the stack
dT‘ank‘ {VNobj.+N5ubj. } John {NSUbJ}

Note that I use the () { X} notation here. The X category here has no effect, as a
functional node will always have a projected value (after all they are inserted when
their argument and result are already known). Moreover, they are marked with the
() symbol not only because they are not created by any actual input, but also because

they do not affect the final linear order: we ignore them completely when we come

to build both < and C.
3. If neither of the two conditions applied

(a) While the top of the closed stack can be attached to the top of the open stack

i. Attach the top of the closed stack to the open stack
PushOpen(Attach(PopOpen(), PopClosed())
ii. Modify the top of the open stack to indicate the attachment took place
SetCategory(openll], ...)
For example, a parser in the following state, which complies with the condition

for this rule:

current:
open stack closed stack
coke {NObj'} «— Top of the stack
0 {X]J\\;Z:;} his {NNObj'} « Top of the stack
drank {VNobj._;'_Nsubj } John {NS“bj'}

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 58

Will be transformed by this rule to:

current:
open stack closed stack
coke, his {N‘)l’j} « Top of the stack
obj
o {xNo }
drank {VNobj_FNsubjA } John {NS“bj‘}

(b) If the open stack has more than one unit in it:

i. Pop the top of the open stack and attach it to the new top of the open
stack (the right argument of Attach is popped first).
PushOpen(Attach(PopOpen(), PopOpen())

ii. Modify the top of the open stack to indicate the attachment took place

(SetCategory(openll], ...)

This rule applies for the parser in the previous state, and it will be transformed

by the current rule to:

current:

open stack closed stack
0, coke, his {XNObj }
drank {VNobj.+Nsubj. } John {NSUbj' }

(c) If the open stack had no units other than the top unit, push the top of the open
stack to the closed stack
PushClosed(PopOpen())
This means that if the only element in an open stack cannot attach the next

unit, or be attached to it, it is pushed into the closed stack.

4. Repeat the process until there are no more units to read, and the closed stack

contains exactly one element.

4.2.3 Parsing Samples

To demonstrate how the pre-parser works, I will start by using a few non problematic
sentences. Each parse state will trace the three data structures from the previous section.
Each data structure will be displayed as a list, with semicolons as separators. When a

unit consists of more than one unit, a comma will separate the more basic elements.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 59

(53) John saw Mary

(a)

‘John’ is encountered and is assigned a category.

current: John {N subj. - \obj. }

open stack | closed stack

‘John’ can be attached to the top of the open stack because it is empty. ‘saw’
is then read. This follows rule [

current: saw {VNobjA+Nsubj. , VSobj +Nsubj}

open stack closed stack

John {N“”“bj', N"bj'}

‘saw’ cannot be attached to the top of the open stack, but the top of the open
stack can be attached to ‘saw’ following rule

current: saw {VNobjA+Nsubj., VNobjA+Nsubj.}

open stack | closed stack

@{X“//} John {Nsubj-’Nobj.}

Rule |l applies again, and ‘Mary’ is read. The new unit is assigned two possible

categories, because ‘saw’ can attach both a sentence and a direct object.

current: Mary { Nsubj. Nobj.}

open stack closed stack

saw {VNobj._’_Nsubj‘ s VNobi. 4 Nsubs. }
@ {X‘\//} John {]\/'subj.7 Nobj.}

‘Mary’ can be attached to saw, and so rule [I| applies. No further input exists,

and so the current unit is empty.

current:

open stack closed stack

Mary {Nsubj.’ Nobj.}

saw {VNobj._;’_Nsubj‘ s Vivobj. 4 subj. }
0{xy} John { N*u%- NbJ-}

Since no current unit is available, rule (3| applies. Mary’ cannot attach 'John’,

and so rule |33} is skipped. Rule now applies, ‘Mary’ is right-attached to

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 60

‘saw’, and ‘saw’ is modified to exclude the case it can attach a sentence, and

reduced as not to allow it to attach another object.

current:

open stack closed stack

saw, Mary {Vysub;. }
0 {X‘\//} John {Nsubj.’ Nobj‘}

Again, no current unit is available, and so we switch to rule |3 ‘saw’ can
attach ‘John’ and so rule [3a) applies. ‘John’ is attached to ‘saw’, and ‘saw’ is

modified to indicate it does not need another subject.

current:

open stack closed stack
saw, Mary, John {V'}
0{xv}

Rule applies now to yield:

current:

open stack closed stack

0, saw, Mary, John {V'}

Rule |3c| applies, and the only unit is moved to the closed stack. This is the
final state, as it fits the stop conditions in rule

current:

open stack | closed stack

0, saw, Mary, John{V}

The expected result is a string of units in which the arguments of the verb are in

non-dominance relation with the verb. This sentence can have the following correct T

dominance order:

. [saw < [Mary]Mary < [John] .4, s

aw

The next example shows how the subject / object ambiguity is resolved.

(54) John saw Mary dance

Processing starts as it did in the previous case, right up the step @ It then

proceeds in the following manner:

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 61

()

(h)

‘Mary’ can be still be attached to saw, and so rule [1| applies. ‘dance’ is read
and is assigned categories. Since it is not clear whether ‘dance’ is a noun or a

verb, it is assigned more than one possible category.

current: dance {VNsubj. , Novi- - \subj. }

open stack closed stack

Mary {Nsubj.’ Nobj.}

saw {VNobj.+Nsubj. 5 Vsobj._;'_Nsubj. }

0 {xY) John { N, Nobi-}

‘dance’ cannot be attached to ‘Mary’, but ‘Mary’ can be attached to ‘dance’ if
we add a functional category, and so rule [2| applies: we move the top of the
open stack to the top of the closed stack, and add a sentence functional unit

to the top of the open stack.

current: dance {VNsubj‘ , Nobjl’ Nsubj.}

open stack closed stack
0{xV}

saw {VNobj.+Nsubj. , VSObj._;'_Nsubj.} Mary { Nsubi- | Nobi-}
0{xV} John { N*ubi Nobi-}

Now rule [1{ can apply, since the current unit can be attached to the top of the
open stack. ‘dance’ is therefore pushed to the top of the stack, and its

category set is modified to reflect its future role. No more input is available.

current:
open stack closed stack
dance {Visuvs. }
0{xy}
saw {VNobj._;'_Nsubj 5 VSobj.+Nsubj' } Mary {NSUbJ, NObj}
0{xy} John { N*ub- N°bi-}

Rule [3|is now relevant. Rule [3a]is checked, and indeed ‘dance’ can attach an
argument from the closed stack. ‘Mary’ is popped and attached. Now ‘dance’

cannot attach any more elements.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva

current:

open stack closed stack
dance, Mary {V'}

0{xy}

saw {VNobj.+N5ubj.) VVobj'_;'_Nsubj. }
0 {X“//} John {NSUbj-,Nobj,}

(i) ‘dance’ is now attached to the second open stack element, following rule

The result is:
current:

open stack closed stack
0{xV}

saw {VNobj.+N5ubj.) VVobj'_;'_Nsubj. }
0,dance, Mary {} John { Nsubi- Nebi-}

(j) The process is repeated for ‘saw’ and 0.

current:

open stack closed stack

saw, 0, dance, Mary {Vysu;. |
0{xy} John { N*ub- N°bi-}

(k) Rule [3alis repeated:

current:

open stack closed stack
saw, 0, dance, Mary, John {V'}
0{xy}

(1) Rule [3b|applies again:

current:

open stack closed stack

0, saw, 0, dance, Mary, John {V'}

(m) And finally rule [3c|is applied to yield:

current:

open stack | closed stack

0, saw, 0, dance, Mary, John {V'}

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva

The final assertion set is the one we expected to have, and its growth has been

63

deterministic: there was no need to withdraw any decision, simply because the role

of object / subject does not become critical until the attachment occurs. A valid C

dominance order can therefore be found:

° [saw < [dance < [Mary]

Mary < [JOhn] John] saw

dance

The case of the next example, follows the same path, except the functional category is a

D rather than an S.

(55) John gave her books.

current:

open stack

closed stack

0, gave, 0, books, her, John {V'}

Note that the final outcome of this sentence allows two readings. ‘her’ does not dominate

books, but the reading in which it is not dominated by books is also kept, and the ambiguity

is decided by the next module:

e Dative ‘her’: [gave < [books|y, s < [her]y., < [John] o]

e Genitive ‘her”: [gave < [books < [her],,. |, ons < [JORN] jopn]

gave

gave

The same goes for the example I gave against Pritchett’s analysis of PP attachment,

sentence (38|b) on page repeated here as (50)):

(56) John brought shoes from Italy from work.

current:

open stack

closed stack

0, brought, shoes, from, I'taly, from,work, John {V'}

The sentence does not require re-interpretation, as both PPs can be dominated by the

verb, and other semantic and syntactic factors determine that it is unlikely for the verb

to be modified by a source argument twice E}

'5In some contexts it would be fine, of course: ‘John brought me shoes from the top shelf from behind

the pink shoes’, which is fine in Hebrew.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 64

4.3 Data Overview
4.3.1 Explaining Garden Path Sentences

What we know about garden path sentences, is that the parser cannot correct a mistake
it has made before. For deterministic parsers (and my pre-parser), this means it cannot
make a mistake, as mistakes cannot be corrected. I would now like to follow the parse
process of some garden path sentences. 1 will not follow every parse state, but move to

the point where the mistake is made.

(57) Without her contributions ceased.

(a) At some stage the parser reads the word ‘contributions’.

current: contributions {N obj. - \subj. }

open stack closed stack
her {N, NNObj‘}
without { Pyob;. }

(b) Since ‘contributions’ can be extended by ‘her’ via a functional category, rule
is used, ‘her’ is pushed into the closed stack, and a functional category is

pushed into the open stack:

current: contributions {N obj. - \subj. }

open stack closed stack
o[V
without { Pyobs. } | her {NNObj' }

(¢) Rule(l]is used, followed by to yield:

current:

open stack closed stack
contributions, her { N°*J-}

o (N}
without { Pyob;. }

(d) The next rules will bring us to the following parse state, in which the

bracketing condition is not obeyed.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 65

current: ceased{Vysuv;s. }

open stack closed stack

without, (), contributions, her { P}

The order of the units in the open stack cannot be changed now: even if we
had operations that could put new units in between the existing units, the
following would still hold:

without < contributions < her

Since ‘her’ modifies ‘without’, every unit that intervenes between them should
also modify ‘without’. This is not the case, as ‘contributions’ intervenes
between the two, no C can be the correct tree, and we get a processing
difficulty. The cognitive confusion we get is a feeling that ‘ceased’ is left
without a subject. This is predicted by the violation of the bracketing
condition: ‘conditions’ is between ‘without’ and its modifier ‘her’ and
therefore must modify ‘without’. As a modifier of ‘without’, it cannot serve as

a subject.

The same problem occurs when processing:

(58) After Susan drank the water evaporated

(a) At some point we reach the following state:

current: evaporated {VNsubj s ViNsubj. 4 pobi. }

open stack closed stack
water {N"bj'}

the {DNObj‘ }

d?“ank‘ {VNobj.+Nsubj.}
0{xy}

After{Py} Susan { N*ub3-, N°bI-}

(b) Since ‘evaporated’ cannot be attached to ‘water’ and ‘water’ cannot be a
subject of a sentence (since ‘drank’ cannot take a sentential argument), rule
applies. ‘Susan’ cannot be attached to ‘water’ and so rule [3b|is used:
evaporated {VNSM,J; , VNsubj4+Nobj4} the, water {NObj'}
drank {VNobj._;'_Nsubj}
b{xY)

After {Py} Susan { NS0 N°bJ-}

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 66

(c) Since ‘evaporated’ cannot be attached to ‘the,water’ either (note that since
the category D projects a noun, the remaining category set has a noun and
not a determiner), and ‘the,water’ cannot be the subject of a sentence, for the
same reason as above, rule [3| applies again. ‘Susan’ cannot be attached to

‘the,water’ either, and so rule [3b]is used again:

current: evaporated {VNsubJ: s ViNsubj. 4 pobi. }

open stack closed stack

drank, the, water {Vysub;. }

0{xv}

After {Py} Susan { Nsub3- Nobs- 1

(d) The next stage attaches ‘Susan’ to ‘drank’, yielding the following state, in
which the bracketing condition is violated by the unit ‘water’:

current: evaporated {VNsubj , VNsubj4+Nobj4}

open stack closed stack
drank,the, water, Susan {V'}
0{xy}

After{Py}

In much the same fashion it can be shown that another sort of garden path type charac-
terized by Pritchett can be explained using the same mechanisms. The famous examples
of main clause / relative NP ambiguity, repeated here as , are parsed until the verb is

reached. This yields the following two near final states:

(59) (a) The boat floated down the river.

current:
open stack closed stack
floated, down, the, river { N5%%-}
0 {XX‘//} the, boat {Nsubj.’ Nobj,}

(b) (The boat floated down the river sank.

current: sank {Vysu;. }

open stack closed stack
floated, down, the, river { N5%%-}
0 {X“//} the, boat {NSUbf, Nobj-}

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 67

In both cases ‘the boat’ will now be attached to the top element of the open stack, yielding
a successful order in the first case, and violating the non dominance constraint in the latter,
as ‘boat’ is modified by ‘floated’ and therefore dominates it, and should therefore not be
allowed to follow it in <. Had ‘floated’ not been ambiguous between active and passive
form, ‘boat’ could be prevented from acting as its argument (for instance, by pushing on
top of it a functional barrier at the top of the closed stack, or by preventing a verb to take
its argument from another phase, a strategy that can be supported by other arguments
as well), which would save the normal reduced relative from becoming a garden path as

well.

The current mechanism is not sufficient to differentiate between sentences characterized
by |Pritchett| as Complement Clause / Relative Clause Ambiguity. Using the current
algorithm description, both sentences will end up having a correct dominance order

limited by <.

(60) (a) The man told the child that he was entertaining some people
told < the < child < that < was < entertaining < some < people < he <
the < man
(b) (The man told the child that he was entertaining to smile
told < the < child < that < was < entertaining < he < to < smile < the <

man

The correct complement order has been achieved: every argument follows its predicate,
and the bracketing condition will not be breached, which is obviously undesirable. There
are two ways for dealing with this. One follows inserting units that lack phonological input
(such as traces, PROs etc.). The other has complexity motivated reasons, and would be

dealt with in the next section.

4.3.2 The Desired Order of Complements

The current parser cannot deal with the difference between (60a)) and (60}b)), repeated
here as (61)ja)) and (61}ib]).
(61) (a) The man told the child that he was entertaining some people.

(b) ;The man told the child that he was entertaining to smile.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 68

The main reason is this: the parser builds its arguments in an order which is not directed
by the data, nor by any of the objectives I have set above. The order of the arguments
is determined arbitrarily by the initial description that I have provided for the algorithm.
The parser, as it has been described so far, attaches arguments that follow the verb in
the order they appear, and attaches the subject of the verb when all the other arguments
have been exhausted. While this mimics the classical description of first building the VP
and then the various functional heads, it causes this failure, as well as other problems I

discuss below.

First and foremost, this causes a problem with the storage constraint. It is rather
evident, that the main reason that the closed stack constraint is O(n) rather than O(1),
has to do with the fact that we may accumulate subjects of embedded sentences. A
sentence such as can have an infinite number of subjects, as we can repeat ‘that John

told Mary’ as many times as we wish.
(62) Dan told Jane that John told Mary that he is tired.

There is a possible solution for this problem, if we required the subject of the sentence to
be attached to the verb before a new sentence begins. In this case we would keep only
the subject of the last clause until it is attached, and the closed ‘stack’ would only require
a finite amount of storage, or O(1) storage. The open stack will still grow linearly, but

perhaps this can also be dealt with.

Evidence in favour of this assumption can be drawn from sentences in Hebrew, which
are not interpreted as ambiguous, although syntactically, they are. Consider the following
data in Hebrew. The phenomena of ‘right association’, already familiar in other contexts,
such as example , may explain why is not perceived as an ambiguous sentence
(even though syntactically it is). Once we associate the dative complement with ‘said’, we
are reluctant to associate it again with another verb, especially since the other verb has
only a rather weak need for a dative complement. However, this is not the case when we
move the dative complement into a topic position, as in and . The topicalized
element remains available for interpretation as the argument of every verb that needs it,
and the actual interpretation is determined by many factors, such as ‘how much’ each
verb would ‘miss’ a dative argument, emphasis on the verb (the emphasized verb would

be interpreted as missing the argument) and context.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 69

(63) dani yesaper layeladim Je-hu kvar kana lahem kelev
Dani will-tell DAT-the-kids comP-he already bought DAT-them dog
maxar
tomorrow

i ‘Dani will tell the kids that he has already bought them a dog tomorrow’

(64) (a) dani siper [e-hu natan sefer le-yosi
Dani said comP-he gave book DAT-Yosi

‘Dani told (someone) he gave the book to Yosi’

Inaccessible: ‘Dani told Yosi he gave the book (to someone)’

(b) le-yosi dani siper [e-hu natan sefer
DAT-Yosi Dani told comp-he gave book
preferred: ‘Dani told Yosi he gave the book (to someone)’

dis-preferred: ‘It is Yosi, that Dani said he gave the book to’

(c) le-yosi dani hevtiax [e-hu yaazor
DAT-Yosi Dani promised compP-he would-help
preferred: ‘Dani promised (someone) that he would help Yosi’

dis-preferred: ‘Dani promised Yosi that he would help (someone / Yosi)’

There are just two accounts that would allow a topicalized element to be interpreted
as attached to the lower verb in some cases, and to the main verb in other cases. One is
that topicalized elements are not placed by the parser in any position, and are interpreted
at a later stage by some other module. A more economic account would find a place in
the final unit chain that would allow the dative complement to be interpreted either as a
complement of the main verb or as a complement of the embedded verbs. This position is
apparent when we add yet another verb that can take a dative argument, such as in ,
which allows for all three interpretations. Since we have three bracketed sentences here,
the only position that would allow this ambiguity is at the very end of the sentence, but

only if the subject of each verb is attached before the clausal complement.

(65) le-yosi dani siper [e-dana hevtixa [e-amos azar
DAT-Yosi Dani told compP-Dana promised CcOMP-Amos helped

‘Dani told (someone) that Dana promised (someone) that Amos helped Yosi’
this is the preferred reading. Two other readings are also possible:
‘Dani told Yosi that Dana promised (someone) that Amos helped (someone)’

‘Dani told (someone) that Dana promised Yosi that Amos helped (someone)’

Using brackets, it is easy to see the difference between the two possibilities. In the original

order of complements, the linear order created for this sentence would be (I add the

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 70

bracketing condition’s brackets for clarity):

{told < {promised < [helped < Amos]helped < Dana] < Dam’]

promised told

There is no position we can push ‘to Yosi’ that would allow it to be interpreted as an
argument of both ‘told’” and ‘helped’. However, if we attached the subject before the
embedded clause, we would get:

[told < Dani < [promised < Dana < [helped < Amos] helped} pmmised] .

All the closing brackets are aligned, which allows us to place the topicalized elements right
after them, in order to get one of the three possible interpretations:

Dani told Yosi that Dana promised (someone) that Amos would help (someone)

told < Dani < _promised < Dana < [helped < Amos]helped} < Yosi

L promised Jtold
Dani told (someone) that Dana promised Yosi that Amos would help (someone)

told < Dani < —promised < Dana < [helped < Amos]helped < Yosi}

promised | ;14

Dani told (someone) that Dana promised (someone) that Amos would help Yosi

told < Dani < -promised < Dana < [helped < Amos < Yosi]helped}

promised | ;14

The question remains: why would topicalization re-create a missing ambiguity, why was
the ambiguity missing in the first place. For these I refer the reader to as this is,

indeed, a right-association kind of problem.

If we accept this evidence, apparently needed to explain the lack of ambiguity in Hebrew
sentences, and called for by our attempt to reduce processing complexity, we can use this
as a solution to the sentence the original version of the parser failed to explain . If
the algorithm places the subject of the main verb of , repeated here as , before
it began the sentential complement, it has to choose between two options that are not
compatible with each other: either place the verb before the complement clause, or after
the relative clause. It chooses the complement interpretation (both are available since the
noun ‘knows’ it can be a subject, which means the verb can take a complement clause),

and this leads to the following final states:

(66) (a) The man told the child that he was entertaining some people
told < the < child < the < man < that < was < entertaining < some <
people < he
(b) ;(The man told the child that he was entertaining to smile

told < the < child < the < man < that < was < entertaining < he < to <

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 71

smile

While the first sentence still has an appropriate < relation, the garden path sentence does
not, as ‘the man’ intervenes between ‘the child’ and its sentential modifier (the relative

clause), violating the bracketing condition, and correctly predicting a garden path.

Following the change suggested above, we get a uniform solution to both garden path
sentence and the lack of expected ambiguity in Hebrew sentences (I think these examples
can be translated to English as well). This is certainly beyond the strength of most

deterministic and limited backtracking parsers.

4.3.3 A Swing at a Tighter Parser

As I have already suggested in the previous section, it may be possible to reduce the
storage complexity of the parser to O(1). In the various examples I have used above
to track the working of the parser, two general tendencies could be seen: the reason for
limiting the number of units the closed stack contains to O(n) has only to do with the
availability of embedding a sentence within another sentence, and this need would be

eliminated by the modification suggested in the previous section.

This modification can draw support from Marathi, where sentential complements usually
follow the verb, while noun complements usually preceded it, as in , given to me by
Tejaswini Deoskar.

(67) Ni-ni N2-la sangitle ki N3-ni Nb5-la N dile

Nl-erg N2-dat told COMP N3-erg Nb5-dat N4 gave
‘N1 told N2 that N3 gave N4 to N5’

Marathi is generally considered to be a head-final language, so we would expect the com-
plement clause to follow the verb, which is not the case. Marathi’s configuration allows it
to know all it has to know about the verb before commencing the interpretation of another

verb with another subject.

The closed stack is not the only O(n) storage in the parser’s original description. The
open stack grows just as quickly, as it gathers the verbs of every sentence and keeps them
until the parse process finishes. To solve this, we should note that units pushed into the

open stack usually get attached to the previous top, with a few notable exceptions such

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 72

as modifiers that precede their argument. This means that there might not be a need to
maintain an O(n) storage in the open stack either, and the algorithm could do with just
O(1) storage. This can allow us to restate our complexity goal from the objectives section:
parsing in O(1) storage complexity constraint would be better than parsing with O(n)
storage constraint. Such a constraint would make the linear time complexity requirement

redundant, as linear time complexity follows from finite storage complexity.

4.3.4 Explaining Right Association

The effort to explain garden path as a reanalysis problem, for whatever reasons and
descriptions used, cannot account for sentences that are difficult to process due to what I
have labeled in right association sentences. The parsing guidelines I offered above
can manage to explain sentences such as , repeated here as

(68) John will tell the kids he has already bought them a dog tomorrow

Consider the following parser state reached in the described algorithm when ‘tomorrow’
is the next word (I present this in terms of the original description, prior to the changes

that should follow §4.3.2)): they would not change essential bits of the data):

current: tomorrow {Adv.}

open stack closed stack
dog {N obj }

a {DNobj}

bought,them {VNobj_;'_Nsubj. }

has {V'}

0{XV} already { Adv.}
tell, the, kids {Vy 1 Nsup;. } he {Nsubj.}
p{xy} John { N*wbi-}

‘tomorrow’ can be attached neither to ‘dog’, nor to ‘a’, which will soon enough bring us

to the following state:

current: tomorrow {Adv.}

open stack closed stack
bought, them, a,dog {Vyysus;. }

has {V‘y}

0{xy} already { Adv.}
tell, the, kids {Vy 4 Nsubj. } he {NS“bj' }
0{xy} John { N*ub-}

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 73

‘tomorrow’ cannot modify ‘bought’ at the semantic level, but modularity requires that the
syntactic module be unaware of word content. As an adverbial it can modify a verb and
‘bought’ is a verb. It is therefore attached, bringing us to the next state, in which the

sentence ends:

current:
open stack closed stack
bought, them, a, dog, tomorrow {Vysub;. }
has {V‘y}
0{xy} already { Adv.}
tell, the, kids {Vy 1 Nsu;. } he {NS“bj' }
0{xy} John { N*ui-}

Everything is now popped out of the stack, as no further attachment can be made:

current:

open stack closed stack

bought, already, them, a, dog, tomorrow, already, he {V'}
has {V‘y}

0{xy}

tell, the, kids {Vy 1 Nsup;. }

(D{Xx‘//} John {Ns“bj'}

This immediately causes a violation of the bracketing condition: ‘tomorrow’ is not dom-
inated by ‘bought’, and ‘he’ is. Notice that this analysis requires the parser to disregard
that ‘tomorrow’ is incompatible with the (possibly) past marked verb that takes it as a
modifier. Right association can also be demonstrated by sentences that do not require

such parser ‘blindness{'

That explanation holds, of course, for the Hebrew sentences that are not interpreted as
ambiguous, although their syntactic structure is. Sentence (64lial), repeated here as ,
is considered unambiguous by readers, although it has two valid parse trees: one in which

the PP is an argument of ‘told” and the other in which the PP is an argument of ‘gave’.

16 Though the parser can be demonstrated to be that blind. I will use again Ken Barker’s useful list of

garden path sentences from http://www.site.uottawa.ca/ kbarker/garden-path.html:
(69) Every woman that admires a man that paints likes Monet

In reading this many speaker read ‘like’ rather than ‘likes’. This may mean the parser does not use

agreement features to assist it in the parsing process.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 74

(70) dani siper [e-hu natan sefer le-yosi
Dani said comP-he gave book DAT-Yosi

‘Dani told (someone) he gave the book to Yosi’

Inaccessible: ‘Dani told Yosi he gave the book (to someone)’

If we trace the parse process of the sentences, we would arrive to a result state in which ‘he’

follows ‘to Yosi’, and the unavailable interpretation would violate the bracketing condition.

I find it appealing, that in this model garden path and other sentences which are dif-
ficult to process arrive at the same condition when processed by the algorithm. Even
better, the same explanation applies to sentences that do not demonstrate any processing
difficulty, but rather a processing quirkiness: the unavailability of an ambiguous reading.
It is appealing to explain these three phenomena by a single mechanism. Note that this
mechanism by itself is derived primarily for independent reasons: the conditions have
not been set to explain the data, but rather derive from general principles: complexity

constraints.

4.3.5 On-line fixing

One of the interesting things about some garden path and right association sentences,
is that hearing them does not confer the sense of confusion and cognitive effort that
characterizes the reading of the very same sentences. Following |Kedar| (2006)), it is easy
to demonstrate that with a few already familiar examples. Sentence b), repeated here
as a), does not cause conscious effort when we pause after the word ‘drank’ (I use the

symbol | following [Kedar| (2006) to indicate a pause here, as in (71}b).

(71) (a) jAfter Susan drank the water evaporated.

(b) After Susan drank | the water evaporated.

Not all theories can deal with that, as it is not clear that we should now wait for another
predicate and not attach ‘water’ to ‘drank’ right after the pause, which would cause a
garden path in both [Pritchett| (1992) and |Lewis (1998). Some theories do incorporate
possible solutions, such as Kedar| (2006 whose parser does not commit itself to structure
until the end of the phonological phrase and Weinberg (1999)) whose parser does not
commit itself when a merge operation fails. My parser, both before and after the changes
suggested in §4.3.2| can deal with this problem easily, as a pause may simply trigger an

‘expect no further input’ behaviour. When ‘water’ appears, no new elements can be

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 75

attached to ‘drank’. This is not a plausible behaviour for a parser in which there is no
notion of different states for phrase, parsers that treat the entire structure as available for

processing.

More intriguing examples from |Kedar| (2006)) are the classical main clause / relative NP
local ambiguity sentences such as b) repeated here as (72|a) which require not only a
pause, but also a high tone to avoid making the wrong decision, as in b)ﬂ

(72) (a) ;The boat floated down the river sank.
(b) The boat floated down the river | sank.
(¢) {The boat | floated down the river sank.
(d) ;The boat | floated down the river sank.

(e) The boat | floated down the river! | sank.

Here too, there is little hope for theories which to do not distinguish between phrases to
which more elements can still be added, and phrases to which no more elements can be
added, but the fact that a pause alone does not suffice, correlates well with my parser(s).
Simply assuming ‘no more input’ will not do, as the parser will simply attach ‘the boat’
as the subject of the verb (since this is its default behaviour when there is no more input).
The high tone here may signal ‘perform unorthodox attachment’ (attach the verb phrase
to the noun rather than the other way around). Any alternative in which the erroneous
attachment has already taken place at this stage does not allow the sentence to be saved by
a high tone that appears afterward. Such theories would expect some phonetic variation
at the site of the wrong attachment, such as the speculative (72\c) or d)7 but this is
not the case. However, combining the two pauses and the high tone as in e), does
provide the best cue to avoid the processing difficulty: apparently a better cue than the

one provided exclusively by a high tone and a pause before the second verb.

"Here too, I follow [Kedar]s (2006) high tone symbol, x

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 76

4.4 Desiderata
4.4.1 Preserving Syntactic Notions

Every new mechanism for structure building requires preservation of notions which lie
at the heart of previous theories. An example is [Epstein’s (1999) attempt to preserve
generative syntactic terms such as c-command in Minimalism. I have already claimed that
the (pre-)parsers I present are compatible with a variety of syntactic theories. However, if
these parsers can be claimed to have some insight into the actual workings of the human
parser, it may be desirable to use the trace of the algorithm to re-phrase some of these

notions, thus ridding the rest of syntax of the need to provide an explanation for them.

4.4.2 Dealing with SOV languages

There is no commonly accepted explanation for the existence of the few garden path
patterns that exist in head-final languages such as Japanese. Some even doubt whether the
known examples really are garden paths, or simply an accumulation of different processing
difficulties. |Pritchett (1992), for example, correctly predicts to be a garden path, as
‘Frank-ni’, first analyzed as the dative complement of ‘syookai’, does not dominate or
govern the dative complement position of ‘iwaseta’ where it should end up, thus violating

the OLLC.

(73) |Pritchett| (1992)) example (362)

Frank-ni Tom-ga Guy-o syookai suru to John-wa iwaseta
Frank-DAT Tom-NOM Guy-ACC introduce COMP John top said-CAUSE

;‘John made Frank say Tom introduced Guy’

However, Prithcett incorrectly predicts sentences like to cause garden path as well,
as ‘Yumiko-o’ has to be re-analyzed as the object of the verb of the matrix clause though

it is first analyzed as the object of the verb of the embedded clause.

(74) Mulders| (2005) example (17)

0 Yumiko-o yobidasita kissaten-ni nagasi koto mata-seta
(Yumiko-AcC summoned tea room-LOC long time made wait

‘(someone) made Yumiko wait for a long time in the tea room to which he
summoned her’

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 7

Here too, the source position does not dominate or govern the target position. Pritchett’s
constraint, the OLLC, is violated, but no processing difficulty is encountered. There is
quite a bit of discussion about the actual causes of this inconsistency. Mazuka and Itoh
(1995) use it to claim garden paths in Japanese are caused not by reanalysis failure but
rather by cumulative processing difficulties that lead to conscious effort, while Mulders
(2005) opposes that view and manages to explain these counter-examples to Pritchett
(1992)) using a revised reanalysis constraint (but one which incorrectly predicts to be

incorrect as well).

My basic algorithm does not deal with garden paths in Japanese, simply because the
basic Japanese structure already has an inverse < order, for which there is a C order that
is the correct parse tree of the sentence. Even when argument order is scrambled by some
operation such as topicalization, a correct < is kept. This is obviously a problem, and I

think it can be traced back to the problems raised above in sections [4.3.2] and [£.3:3]

The real problem with analyzing Japanese as having an inverse <, is that the complexity
constraints laid in the preliminaries are strained to the limit when Japanese sentences are
parsed. While during the parsing of sentences in head-initial language the closed stack
grows only by the subjects of the embedded sentences, the closed stack in head final
languages contains each and every argument until the final verb is encountered, forcing
the stack to contain the entire sentence in storage. Such an approach does not allow the
next module to get partial information: the next module has to wait until the sentence is
over. I speculate, but I have yet to prove, that the sort of parser suggested in might
be able to do the trick, and future work will have to look into that. Such work might
benefit from the inclusion of other processing difficulties that I think have the same causes
as garden paths: perhaps Japanese lacks ‘proper’ garden path sentences, but is abundant

with ‘unambiguous ambiguities’, for instance.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 78

5 Summary

In this work I tried to demonstrate how many attributes of the human parser can be
explained by a model that requires the parser to complete the parse process in linear time,
and under a (small and) finite storage constraint. The outcome of this work is not a parser
per se, but rather a pre-parser, as a parse tree is not achieved. Surprisingly enough, though,
many attributes of the human parser are indeed explained by this assumption: garden
paths, right association, unambiguous ambiguities, and even the modularity assumption

are all derived by this seemingly trivial assumption.

This work is yet to be re-implemented in a way that would be able to explain some
more phenomena of processing, namely center embedding, and processing difficulties in
head final language. Future work should address this issue, most probably by further

constraining the complexity assumptions made in this work.

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 79

References

Barton, G., Berwick, R., 1985. Parsing with assertion sets and information monotonicity.

In: Proceedings of IJCAI-85. IJCAI, Inc., Los Angeles, CA.

Epstein, S. D., 1999. Un-principled syntax: The derivation of syntactic relations. In:
Epstein, S. D., Hornstein, N. (Eds.), Working Minimalism. MIT Press, pp. 317-345.

Frazier, L., Fodor, J. D., 1978. The Sausage Machine: a new two-stage parsing model.
Cognition 6, 291-325.

Kedar, T., 2006. Music to my parser. Given as a talk at the Tel Aviv University Linguistics

Department Colloquium. Ask the author for a copy: kedartalatgmail.com.

Kimball, J., 1973. Seven principles of surface structure parsing in natural language. Cog-

nition 2, 15-47.

Knuth, D. E., 1976. Big omicron and big omega and big theta. SIGACT News 8, 18-24.
URL http://doi.acm.org/10.1145/1008328.1008329.

Lewis, R. L., 1998. Reanalysis and limited repair parsing: Leaping off the garden path. In:
Fodor, J. D., Ferreira, F. (Eds.), Reanalysis in Sentence Processing. Kluwer Academic,

pp. 247-284.

Marcus, M. P., 1978. Theory of syntactic recognition for natural languages. Ph.D. thesis,
MIT. URL http://hdl.handle.net/1721.1/16176.

Marcus, M. P., Hindle, D., Fleck, M. M., 1983. D-theory: Talking about talking about
trees. In: Proceedings of the 21th ACL. Cambridge, MA.

Mazuka, R., Itoh, K., 1995. Can japanese speakers be led down the garden path? In:
Mazuka, R., N., N. (Eds.), Japanese Sentence Processing. Lawrence Erlbaum Associates,

pp. 295-329.

Mulders, 1., 2002. Transparant parsing. Head-driven processing of verb-final structures.

Ph.D. thesis, Utrecht University.

Mulders, I., 2005. Transparent parsing: phases in sentenece processing. In: McGinnis, M.,

Richards, N. (Eds.), MITWPL 49. MIT Working Papers in Linguistics, pp. 237-264.

http://doi.acm.org/10.1145/1008328.1008329
http://hdl.handle.net/1721.1/16176

Pre-parsing Efficiently - MA Thesis, Uriel Cohen Priva 80

Pritchett, B. L., 1992. Grammatical Competence and Parsing Performance. Chicago:

University of Chicago Press.

Schneider, D. A., 1999. Parsing And Incrementality. Ph.D. thesis, University of Delaware.

URL http://continuity.ist.psu.edu/559093.html.

Tomita, M., 1987. An efficient augmented-context-free parsing algorithm. Computational

Linguistics 13, 31-46. URL http://doi.acm.org/10.1145/30000.26390.

Weinberg, A., 1993. Parameters in the theory of sentence processing: Minimal commitment

theory goes east. Journal of Psycholinguistic Research 22, 339-364.

Weinberg, A., 1999. A minimalist theory of human sentence processing. In: Epstein,
S. D., Hornstein, N. (Eds.), Working Minimalism. MIT Press, pp. 283-316. URL http:

//www.umiacs.umd.edu/users/weinberg/lamp-024.html.

http://continuity.ist.psu.edu/559093.html
http://doi.acm.org/10.1145/30000.26390
http://www.umiacs.umd.edu/users/weinberg/lamp-024.html
http://www.umiacs.umd.edu/users/weinberg/lamp-024.html

	Introduction
	The Human Parser
	Mission and Disclaimer
	Road map

	Preliminaries
	Objectives
	Garden Paths
	Processing Difficulties and Right Association
	`On-line' Parsing
	Complexity
	Modularity
	Deterministic Parsing and Assertion Sets

	Formal Layout
	Dominance Orders and Assertion Sets
	Parsers

	Previous Work
	Limited Backtracking Parsers
	Pritchett 1992
	Schneider 1999
	Lewis 1998

	Deterministic Parsers
	Marcus 1978
	Weinberg 1993

	My Parser
	Implications on Implementation
	Implementing Complexity
	Implementing Modularity

	Parser Overview
	Data Structure
	General Outline
	Parsing Samples

	Data Overview
	Explaining Garden Path Sentences
	The Desired Order of Complements
	A Swing at a Tighter Parser
	Explaining Right Association
	On-line fixing

	Desiderata
	Preserving Syntactic Notions
	Dealing with SOV languages

	Summary
	Bibliography

